摘要:
The present invention provides a varactor that has increased tunability and a high quality factor Q as well as a method of fabricating the varactor. The method of the present invention can be integrated into a conventional CMOS processing scheme or into a conventional BiCMOS processing scheme. The method includes providing a structure that includes a semiconductor substrate of a first conductivity type and optionally a subcollector or isolation well (i.e., doped region) of a second conductivity type located below an upper region of the substrate, the first conductivity type is different from said second conductivity type. Next, a plurality of isolation regions are formed in the upper region of the substrate and then a well region is formed in the upper region of the substrate. In some cases, the doped region is formed at this point of the inventive process. The well region includes outer well regions of the second conductivity type and an inner well region of the first conductivity type. Each well of said well region is separated at an upper surface by an isolation region. A field effect transistor having at least a gate conductor of the first conductivity type is then formed above the inner well region.
摘要:
A method and device providing a HA junction varactor which may be fabricated with a reduced variation in C-V tuning curve from one varactor to the next. The process produces a varactor with an active region formed substantially by doping an Si substrate with various dopants at various energy levels. Accordingly, unit-to-unit device variation is reduced because etching, growing, and deposition processes to make the active portion of the varactor are reduced or eliminated. The resulting HA junction has a more uniform thickness, and a more uniform doping profile.
摘要:
A method and device providing a HA junction varactor which may be fabricated with a reduced variation in C-V tuning curve from one varactor to the next. The process produces a varactor with an active region formed substantially by doping an Si substrate with various dopants at various energy levels. Accordingly, unit-to-unit device variation is reduced because etching, growing, and deposition processes to make the active portion of the varactor are reduced or eliminated. The resulting HA junction has a more uniform thickness, and a more uniform doping profile.
摘要:
A process is disclosed for fabricating precision polysilicon resistors which more precisely control the tolerance of the sheet resistivity of the produced polysilicon resistors. The process generally includes performing an emitter/FET activation rapid thermal anneal (RTA) on a wafer having partially formed polysilicon resistors, followed by steps of depositing a protective dielectric layer on the polysilicon, implanting a dopant through the protective dielectric layer into the polysilicon to define the resistance of the polysilicon resistors, and forming a silicide.
摘要:
A structure comprises a single wafer with a first subcollector formed in a first region having a first thickness and a second subcollector formed in a second region having a second thickness, different from the first thickness. A method is also contemplated which includes providing a substrate including a first layer and forming a first doped region in the first layer. The method further includes forming a second layer on the first layer and forming a second doped region in the second layer. The second doped region is formed at a different depth than the first doped region. The method also includes forming a first reachthrough in the first layer and forming a second reachthrough in second layer to link the first reachthrough to the surface.
摘要:
A structure and method of fabricating lateral diodes. The diodes include Schottky diodes and PIN diodes. The method of fabrication includes forming one or more doped regions and more trenches in a silicon substrate and forming metal silicides on the sidewalls of the trenches. The fabrication of lateral diodes may be integrated with the fabrication of field effect, bipolar and SiGe bipolar transistors.
摘要:
Various methods of fabricating a high precision, silicon-containing resistor in which the resistor is formed as a discrete device integrated in complementary metal oxide semiconductor (CMOS) processing utilizing low temperature silicidation are provided. In some embodiments, the Si-containing layer is implanted with a high dose of ions prior to activation. The activation can be performed by the deposition of a protective dielectric layer, or a separate activation anneal. In another embodiment, a highly doped in-situ Si-containing layer is used thus eliminating the need for implanting into the Si-containing layer.
摘要:
A method of fabricating a resistor in which the resistance value of the resistor is measured and adjusted after silicidation is provided. The method of the present invention begins with first providing at least one resistor, e.g., polysilicon, having a resistance value on a surface of a semiconductor substrate. The at least one resistor has been subjected to a silicidation process. Next, the resistance value of the at least one resistor is measured to determine the actual resistance of the resistor after silicidation. After the measuring step, the resistance of the resistor is adjusted to achieve a desired resistance value. The adjusting may include a post silicidation rapid thermal anneal and/or a post silicidation ion implantation and a low temperature rapid thermal anneal step.
摘要:
A structure comprises a deep subcollector buried in a first region of a dual epitaxial layer and a reachthrough structure in contact with the deep subcollector to provide a low-resistive shunt which prevents CMOS latch-up for a first device. The structure may additionally include a near subcollector formed in a higher region than the deep subcollector and under another device. At least one reachthrough electrically connects the deep subcollector and the near subcollector. The method includes forming a merged triple well double epitaxy/double subcollector.