Abstract:
The present disclosure relates to neuromuscular stimulation and sensing cuffs. The neuromuscular stimulation cuff has at least two fingers and a plurality of electrodes disposed on each finger. More generally, the neuromuscular stimulation cuff includes an outer, reusable component and an inner, disposable component. One or more electrodes are housed within the reusable component. The neuromuscular stimulation cuff may be produced by providing an insulating substrate layer, forming a conductive circuit on the substrate layer to form a conductive circuit layer, adhering a cover layer onto the conductive circuit layer to form a flexible circuit, and cutting at least one flexible finger from the flexible circuit. The neuromuscular stimulation cuff employs a flexible multi-electrode design which allows for reanimation of complex muscle movements in a patient, including individual finger movement.
Abstract:
A system detects extravasation or infiltration by segregating active components that drive a passive sensor for economical single use. A receiving antenna of the passive sensor receives antenna for receiving a transmitted signal comprising RF electromagnetic power. A first circuit transmits a first portion of the received signal through a body portion. A sensor detects a resultant signal from the body portion. A second circuit combines a reference signal comprising a second portion of the received signal with the resultant signal so as to define an output signal. A transmit antenna transmits the output signal to a receiver.
Abstract:
A system and method enhance clinical effectiveness for monitoring for a change in a level of fluid in tissue by using a device attached to a body portion that wirelessly reports to a remote apparatus or receiver a current received power level for indications of extravasation or infiltration. Adjusting an activation rate of fluid detection, reporting or both extends service life of the device.
Abstract:
The present disclosure describes systems, methods, devices for performing thought-controlled neuromuscular stimulation. Also described are methods for producing a neuromuscular stimulation cuff. The systems and methods generally relate to receiving and processing thought signals indicative of an intended action, and then delivering stimulation to effectuate the intended action through a neuromuscular stimulation cuff. The neuromuscular stimulation cuff includes a flexible printed circuit board having at least one finger and a plurality of electrogel discs disposed on the at least one finger. The neuromuscular stimulation cuff may be produced by providing a layer of polyimide, etching a conductive copper circuit including a plurality of electrodes into the layer of polyimide to form an etched circuit layer, adhering a cover layer onto the etched circuit layer to form a flexible printed circuit board (PCB), and cutting at least one finger from the flexible PCB. The neuromuscular stimulation cuff employs a flexible multi-electrode design which allows for reanimation of complex muscle movements in a patient, including individual finger movement.
Abstract:
A chronically implanted medical device is disclosed that has an outermost layer formed from a conjugate of a polymer with lipoic acid, the conjugate having free 1,2-dithiolane groups. It is contemplated that this layer scavenges reactive oxygen species, i.e. acts as an antioxidant, and thus reduces inflammation and other adverse effects around the implant itself.
Abstract:
The following relates generally to systems, methods and devices for rehabilitation of patients with motor impairment. Electrical signals of a patient may be sensed using electrodes. From the electrical signals, an intent to move or focus level may be determined. Based on the electrical signals, neuromuscular stimulation is delivered to the patient. The stimulation may be delivered through a neuromuscular stimulation sleeve.
Abstract:
A chronically implanted medical device is disclosed that has an outermost layer formed from a conjugate of a polymer with lipoic acid, the conjugate having free 1,2-dithiolane groups. It is contemplated that this layer scavenges reactive oxygen species, i.e. acts as an antioxidant, and thus reduces inflammation and other adverse effects around the implant itself.
Abstract:
The present disclosure relates to neuromuscular stimulation and sensing cuffs. The neuromuscular stimulation cuff has at least two fingers and a plurality of electrodes disposed on each finger. More generally, the neuromuscular stimulation cuff includes an outer, reusable component and an inner, disposable component. One or more electrodes are housed within the reusable component. The neuromuscular stimulation cuff may be produced by providing an insulating substrate layer, forming a conductive circuit on the substrate layer to form a conductive circuit layer, adhering a cover layer onto the conductive circuit layer to form a flexible circuit, and cutting at least one flexible finger from the flexible circuit. The neuromuscular stimulation cuff employs a flexible multi-electrode design which allows for reanimation of complex muscle movements in a patient, including individual finger movement.
Abstract:
A System and method enhance clinical effectiveness for monitoring for a change in a level of fluid in tissue by using a device attached to a body portion that wirelessly reports to a remote apparatus or receiver power level for indications of extravasation or infiltration. Adjusting an activation rate of fluid detection, reporting or both extends service life of the device.
Abstract:
The present disclosure relates generally to systems, methods, and devices for interpreting neural signals to determine a desired movement of a target, transmitting electrical signals to the target, and dynamically monitoring subsequent neural signals or movement of the target to change the signal being delivered if necessary, so that the desired movement is achieved. In particular, the neural signals are decoded using a feature extractor, decoder(s) and a body state observer to determine the electrical signals that should be sent.