Abstract:
The present disclosure provides a thin film transistor, a method of fabricating the same, an array substrate and a display device. The thin film transistor includes: source and drain electrodes in a same layer arranged on a base substrate; an active layer on the base substrate and in contact with the source and drain electrodes; a gate insulating layer at a side of the active layer away from the base substrate; a gate electrode at a side of the gate insulating layer away from the base substrate. Orthographic projections of the gate electrode, the source electrode and the drain electrode on the base substrate do not overlap with one another, and a region of the active layer not covered by the gate electrode, the source electrode and the drain electrode and at a side of the active layer away from the base substrate is subjected to conductorization.
Abstract:
An electrostatic discharge device comprises a transistor with one of its source and drain serving as an input terminal of said device and the other serving as an output terminal. Said transistor comprises: a first conductive layer used as a first floating gate; a first insulating layer covering said first conductive layer; an active layer on said first insulating layer; a second insulating layer covering said active layer; a second conductive layer used as a second floating gate and on said second insulating layer; a third insulating layer covering said second conductive layer; a third conductive layer and a fourth conductive layer on said third insulating layer and on both sides of the active layer, said third conductive layer being isolated from the fourth conductive layer, wherein said third conductive layer serves as one of the source and the drain and said fourth conductive layer serves as the other.
Abstract:
The present invention provides a manufacturing method of an array substrate, comprising a step of forming insulation layers in a driving area and a display area of the array substrate, wherein thin film transistors are provided in both the display area and the driving area; the insulation layers are arranged between gate electrodes and active layers of the thin film transistors. A thickness of the insulation layer of the thin film transistor in the driving area is larger than a thickness of the insulation layer of the thin film transistor in the display area.
Abstract:
An array substrate, an electro-static discharge method thereof and a display device are disclosed. The array substrate includes: a plurality of data lines, a plurality of gate lines, a power signal line, a charge release signal line, a plurality of electro-static discharge units and at least one short circuit ring unit. The charge release signal line and the power signal line are disposed in parallel, two electro-static discharge units are disposed between them to form an electro-static discharge circuit, each gate line and/or each data line is connected with the charge release signal line by one electro-static discharge unit; the short circuit ring unit is connected between the charge release signal line and the power signal line.
Abstract:
Disclosed are an array substrate, a driving method thereof, and a display device. The array substrate comprises a scan driving unit (10) located in a peripheral area and configured to input an enable signal to one terminal of at least one driving control line (Vdd) in a display area so as to drive an OLED device to emit light. The array substrate further comprises at least one compensation control unit (100) and a compensation voltage source (101) configured to provide a compensation voltage (Vc). One terminal of the compensation control unit (100) is connected to the compensation voltage source (101), the other terminal thereof is connected to the other terminal of the at least one driving control line (Vdd), and the compensation control unit (100) is configured to control the compensation voltage source (101) to input the compensation voltage (Vc) to the other terminal of the driving control line (Vdd). The compensation voltage (Vc) is less than or equal to a voltage (VDD) of the enable signal, mura caused by IR Drop can be eliminated.
Abstract:
Provided are an AMOLED pixel unit, a method for driving the same, and a display device. The AMOLED pixel unit includes a compensating unit, a light emitting control unit, a driving transistor, a storage capacitor and an organic light emitting diode, wherein the compensating unit is switched on under the control of a signal on a scan line; the light emitting control unit is switched on under the control of a signal on a light emitting control line; an anode of the organic light emitting diode is connected to a second terminal of the storage capacitor, and a cathode of the organic light emitting diode receives a second power supply signal. Such a circuit can effectively compensate for the drift and the non-uniformity of the threshold voltages of the transistors and the non-uniformity of the voltages of the organic light emitting diodes.
Abstract:
Embodiments of the disclosure provide a manufacturing method of a TFT array substrate, a TFT array substrate and a display device. The method comprises steps of: S1. forming a thin film transistor on a base substrate; S2. forming a passivation layer thin film on the base substrate after the step S1; S3. forming a passivation layer via hole and a light-shielding pattern on the base substrate after the step S2; and S4. forming a color filter layer and a pixel electrode on the base substrate after the step S3. The pixel electrode is electrically connected to a drain electrode of the thin film transistor through the passivation layer via hole, and the color filter layer is in correspondence with a position of the pixel electrode.
Abstract:
An organic electroluminescent display device, a driving method thereof and a display device are provided. The organic electroluminescent display device comprises: a plurality of pixel units arranged in matrix, each of the pixel units comprising a plurality of sub-pixel units for displaying different colors, and in each row of the pixel units, two adjacent pixel units constituting a pixel unit group; and a sub-pixel unit for displaying white between the two adjacent pixel units in each pixel unit group. The area occupied by the sub-pixel unit for displaying white is greater than that occupied by any one sub-pixel unit in the pixel unit. The sub-pixel unit for displaying white is configured such that the luminance of emitted light thereof replaces the luminance of light emitted by one pixel unit of two adjacent pixel units in a frame according to a preset condition.
Abstract:
An electroluminescent display substrate and a manufacturing method thereof, a display panel and a display apparatus are disclosed. The electroluminescent display substrate includes: a base substrate including a display area and a peripheral area surrounding the display area, wherein at least one OLED device is in the display area; a pixel defining layer in the display area and the peripheral area; at least one groove in the pixel defining layer in the peripheral area; wherein the at least one OLED device has a first electrode, the first electrode is on a side of the pixel defining layer away from the base substrate and extends to cover the groove.
Abstract:
The present disclosure provides an optical sensor, a manufacturing method thereof, a display device, and a display apparatus, and relates to the display technology. The optical sensor includes a thin film transistor and a PIN diode on a surface of a drain of the thin film transistor. A material of a P region of the PIN diode, a material of an I region of the PIN diode, and a material of an N region of the PIN diode are oxides. Since the PIN diode is made of oxides rather than amorphous silicon, hydrogen is not introduced. Therefore, the performance of the thin film transistor will not be affected, thereby achieving the improvement of the performance of the display device and the display effect.