Abstract:
Embodiments of the present disclosure provide a pixel driving circuit and a pixel driving method. The pixel driving circuit comprises a driving transistor, a storage capacitor, a light-emitting device, a first switch transistor, a second switch transistor, a third switch transistor, a fourth switch transistor and a fifth switch transistor. The pixel driving circuit and the pixel driving method are implemented such that a driving current generated by the driving transistor is relevant to a working voltage provided by a first power supply terminal, an activation voltage of the light-emitting device, a working voltage of the light-emitting device upon emitting light and a data voltage, yet irrelevant to a threshold voltage of the driving transistor, thereby refraining the driving current flowing through the light-emitting device from influence exerted by the non-uniformity and drifting of the threshold voltage of the driving transistor, and in turn effectively improving the uniformity of the driving current flowing through the light-emitting device. When the activation voltage of the light-emitting device increases with the aging of the light-emitting device, the pixel driving circuit and the pixel driving method enable the driving current flowing through the light-emitting device to increase, thereby compensating for attenuation of the display luminance caused by the aging of the light-emitting device.
Abstract:
An array substrate includes a display area and a driving area; thin film transistors in the display area and the driving area are provided with insulation layers between gate electrodes and active layers, and the thickness of the insulation layer of the thin film transistor in the driving area is larger than the thickness of the insulation layer of the thin film transistor in the display area. The present invention has the beneficial effects that when electrostatic discharge occurs between the gate electrode and the source/drain electrodes of the driving area, the breakdown of the insulation layer can be prevented, thereby resulting in no short circuit of the gate electrode and the source/drain electrodes; meanwhile, adverse effects such as a reduced migration rate and threshold voltage drift of the thin film transistor in the display area will not be caused.
Abstract:
Embodiments of the disclosed technology provide an amorphous oxide thin film transistor (TFT), a method for preparing an amorphous oxide TFT, and a display panel. The amorphous oxide thin film transistor includes: a gate electrode, a gate insulating layer, a semiconductor active layer, a source electrode and a drain electrode. The semiconductor active layer comprises a channel layer and an ohmic contact layer, and the channel layer has a greater content of oxygen than the ohmic contact layer; the channel layer contacts the gate insulating layer, and the ohmic contact layer comprises two separated ohmic contact regions, one of which contacts the source electrode and the other of which contacts the drain electrode.
Abstract:
Embodiments of the present invention disclose a thin film transistor and an array substrate, manufacturing methods thereof, and a display device, which relate to the field of display technology, and can improve drifting of a threshold voltage of a thin film transistor and enhance the stability and reliability of an array substrate. The thin film transistor comprises an active layer and a gate insulating layer, wherein the material of the active layer is a metal oxide semiconductor, and during forming the thin film transistor, the gate insulating layer conveys oxygen to the active layer so as to reduce an interface state density and a movable impurity concentration of a. contact interface between the active layer and the gate insulating layer.
Abstract:
The present invention provides a complementary thin film transistor and a manufacturing method thereof, an array substrate and a display apparatus, relates to the field of manufacturing technology of thin film transistor, and can solve the problem that active layer materials of first and second thin film transistors in a complementary thin film transistor of the prior art have influence with each other. The manufacturing method of the present invention comprises steps of: forming a pattern comprising an active layer of a first thin film transistor and a protective layer on a base by a patterning process, and the protective layer is at least located above the active layer of the thin film transistor; and forming a pattern of an active layer of a second thin film transistor on the base subjected to above step by a patterning process. The present invention may be applied to various circuits and systems.
Abstract:
The present invention provides a manufacturing method of an array substrate, comprising a step of forming insulation layers in a driving area and a display area of the array substrate, wherein thin film transistors are provided in both the display area and the driving area; the insulation layers are arranged between gate electrodes and active layers of the thin film transistors. A thickness of the insulation layer of the thin film transistor in the driving area is larger than a thickness of the insulation layer of the thin film transistor in the display area.
Abstract:
The embodiments of present disclosure disclose an array substrate, a method for manufacturing the array substrate, and a display device. The method includes forming a pixel electrode layer, a gate metal layer, and a source/drain metal layer on a base substrate, the pixel electrode layer including a first connection part pattern, the gate metal layer including a second connection part pattern, the source/drain metal layer including a third connection part pattern, wherein the first connection part pattern and the second connection part pattern overlap, and a portion of the first connection part pattern extending beyond the second connection part pattern is electrically connected with the third connection part pattern through a first via hole.
Abstract:
A complementary thin film transistor driving back plate and a preparing method thereof, and a display device are disclosed. The preparing method comprises: forming a lower electrode (102) on a base substrate (101); sequentially disposing a continuously grown dielectric layer (103), a semiconductor layer (104), and a diffusion protection layer (105); sequentially forming a no-photoresist region (107), an N-type thin film transistor preparation region (108), and a P-type thin film transistor preparation region (109); removing a photoresist layer (114) of the N-type thin film transistor preparation region (108); removing a diffusion protection layer (105) of the N-type thin film transistor preparation region (105); removing a photoresist layer (114) of the P-type thin film transistor preparation region (109); performing an oxidation treatment to the base substrate (101); disposing a passivation layer (111) on the base substrate (101); and forming an upper electrode (113) on the passivation layer (111).
Abstract:
The present disclosure discloses in embodiments a thin film transistor and a manufacturing method thereof, an array substrate. The thin film transistor comprises: a base substrate, an active layer, a source, a gate, and a drain. Two ends of the active layer are connected to the source and the drain, respectively. The gate comprises a top gate and a bottom gate arranged opposite to each other in a direction perpendicular to the base substrate, the top gate comprising a top gate top portion and a top gate side portion connected to the top gate top portion, the top gate side portion extending from the top gate top portion towards the base substrate. The active layer is sandwiched between the top gate top portion and the bottom gate. A sidewall of the active layer is at least partially surrounded by the top gate side portion.