Abstract:
Explicit feedback format within single user, multiple user, multiple access, and/or MIMO wireless communications. A beamformer provides a first communication to a beamformee, and based thereon, the beamformee may ascertain certain characteristics associated with the type and format of feedback to be provided to the beamformee via a second communication from the beamformee to the beamformer. For example, the first communication may include indication of a current operational mode, such as whether it is in accordance with single-user multiple input multiple output (SU-MIMO) or multi-user multiple-input-multiple-output (MU-MIMO). Also, the first communication may indicate a requested steering matrix's rank to be employed in accordance with subsequent beamforming by the beamformer. Also, additional information such as that pertaining to per-tone SNR values for each respective space-time stream, per-tone or per-sub-band eigen-values, the particular channel width being employed (e.g., 20, 40, 80, or 160 MHz), etc. may be included within the second communication.
Abstract:
A wireless communication device (alternatively, device) includes a processor configured to support communications with other wireless communication device(s) and to generate and process signals for such communications. In some examples, the device includes a communication interface and a processor, among other possible circuitries, components, elements, etc. to support communications with other wireless communication device(s) and to generate and process signals for such communications. Different long training fields (LTFs) are designed using different respective binary sequences. The LTFs are designs based on a number of resource units (RUs) and RU sizes associated with a sub-carriers/tone plan. Each RU allocation specifies a respective one or more RUs of one or more RU sizes for a communication channel. The LTFs are designed such that peak to average power ratio (PAPR) of the LTF increases across the RU allocations as size of the one or more RU sizes increases.
Abstract:
A wireless communication device is configured to perform clear channel assessment (CCA) using one or more CCA levels that are selected based on various criteria. The device receives or detects one or more packets on the communication medium, and the device then processes those one or more packets to determine status of one or more channels within one or more frequency bands using the one or more CCA levels. These CCA levels may be selected based on one or more parameters, and different CCA levels may be used at different times, for different channels, etc. Also, different CCA levels may be used to determine the status of different channels, different portions of the frequency spectrum, etc. When at least one channel is determined as being clear and available for usage, the device is configured to support communications with one or more other devices via one or more channels.
Abstract:
Multi-channel support within single user, multiple user, multiple access, and/or MIMO wireless communications. A communication device is implemented to encode information bit(s) to encoded bits, which subsequently can undergo processing by an interleaver that is implemented to generate interleaved bits. A constellation mapper is implemented to map the interleaved bits to constellation(s) to generate mapped signals. Two or more inverse discrete fast Fourier transform (IDFT) processors are respectively implemented to process the mapped signals to generate signal streams. For example, a first IDFT processor is implemented to process a first of the mapped signals to generate a first signal stream, and a second IDFT processor is implemented to process a second of the mapped signals to generate a second signal stream. Such a communication device also includes communication interface(s) to transmit the signal streams to at least one additional communication device.
Abstract:
Multi-channel support within single user, multiple user, multiple access, and/or MIMO wireless communications. A communication device is implemented to encode information bit(s) to encoded bits, which subsequently can undergo processing by an interleaver that is implemented to generate interleaved bits. A constellation mapper is implemented to map the interleaved bits to constellation(s) to generate mapped signals. Two or more inverse discrete fast Fourier transform (IDFT) processors are respectively implemented to process the mapped signals to generate signal streams. For example, a first IDFT processor is implemented to process a first of the mapped signals to generate a first signal stream, and a second IDFT processor is implemented to process a second of the mapped signals to generate a second signal stream. Such a communication device also includes communication interface(s) to transmit the signal streams to at least one additional communication device.
Abstract:
A wireless communication device (alternatively, device) a communication interface and a processor, among other possible circuitries, components, elements, etc. to support communications with other wireless communication device(s) and to generate and process signals for such communications. A device is configured to generate various orthogonal frequency division multiplexing (OHM) and/or orthogonal frequency division multiple access (OFDMA) packets (e.g., frames, signals, etc.) that are based on any of group of set of OFDM/A frame structures. Across the various OFDM/A frame structures, the ratio of pilot sub-carriers to data sub-carriers across resource units (RUs) decreases as the total number of sub-carriers across the RUs increases. In addition, some of the OFDM/A frame structures include different total number of sub-carriers yet same number of pilot sub-carriers. The device is configured to perform adaptation among and between the various OFDM/A frame structures based on any one or more considerations.
Abstract:
A wireless communication device includes a communication interface and a processor and is configured to generate a preamble of an OFDM packet that includes signal fields (SIGs) that specify first characteristics of a remainder of the OFDM packet that follows the SIG fields. A first at least one SIG includes information to specify second characteristics of a second at least one SIG that follows the first at least one SIG. The wireless communication device then transmits the OFDM packet to another wireless communication device. The second characteristics specifies any number of characteristics including any one or more of a size of a GI between the first at least one SIG and the second at least one SIG, a MCS used to generate the second at least one SIG, a length of the second at least one SIG, or a number of OFDM symbols of the second at least one SIG.
Abstract:
Coordination and synchronization is performed between two or more wireless network managers (e.g., access points (APs)). A first wireless network manager supports first communications with first other wireless communication devices, and a second wireless network manager supports second communications with those first and/or second other wirelessly case devices. The first and second wireless network managers also support communications with one another to coordinate the first and second communications supported with the first and/or second other wireless communication devices. Examples of coordination include selection of which other wireless communication devices are serviced or in communication with which of the first and second wireless network managers, selection of operational parameters (e.g., modulation coding set (MCS), beamforming, frequency band assignment, channel assignment, scheduling information, transmit power, etc.) for the first and second wireless communication devices, synchronization to a common clock (e.g., using timing synchronization function (TSF)).
Abstract:
A wireless communication device is configured to perform clear channel assessment (CCA) using one or more CCA levels that are selected based on various criteria. The device receives or detects one or more packets on the communication medium, and the device then processes those one or more packets to determine status of one or more channels within one or more frequency bands using the one or more CCA levels. These CCA levels may be selected based on one or more parameters, and different CCA levels may be used at different times, for different channels, etc. Also, different CCA levels may be used to determine the status of different channels, different portions of the frequency spectrum, etc. When at least one channel is determined as being clear and available for usage, the device is configured to support communications with one or more other devices via one or more channels.
Abstract:
Selective processing of one or more packets to be transmitted from a wireless communication device to another wireless communication device is effective to reduce the peak to average power ratio (PAPR) of the transmission. The one or more packets are transmitted via two or more sub-bands of an available transmission medium. The number of coefficients or factors within that sequence corresponds to the number of sub-bands via which the one or more packets are to be transmitted. Also, a phase ramp or time-domain cyclic shift may be added to one or more of the packets after having undergone multiplication by one of the coefficients or factors within the sequence.