Abstract:
A vehicle body structure of an electric vehicle is provided, including a floor panel and a battery pack anti-collision structure. A battery pack and a motor are disposed below the floor panel, and the motor is located behind the battery pack. The battery pack anti-collision structure is disposed between the battery pack and the motor, and is configured to prevent the motor from crashing into the battery pack when a rear collision occurs to the electric vehicle.
Abstract:
The present disclosure provides a power-drive system for a vehicle and a vehicle. The power-drive system comprises: an engine; a plurality of input shafts, the engine being configured to selectively engage with at least one of the plurality of input shafts; a plurality of output shafts; a first motor power shaft, a motor power shaft first gear being arranged on the first motor power shaft, the motor power shaft first gear and the plurality of output shafts linking with a differential of the vehicle respectively; a second motor power shaft, a motor power shaft second gear linking with one gear-position driven gear being arranged on the second motor power shaft; a transfer gear, configured to selectively engage with the motor power shaft first gear to link with the motor power shaft first gear, and selectively engage with the motor power shaft second gear to link with the motor power shaft second gear; and a first motor generator, configured to link with the transfer gear.
Abstract:
A brake system (100) and a brake method for a four-wheel drive electric vehicle and a four-wheel drive electric vehicle, in the system, according to a brake mode of the electric vehicle, a state of charge of a battery pack (4) and a vehicle speed, a first brake control unit controls a motor (6) to brake a wheel (9) through a motor controller (2) and a second brake control unit controls a brake actuator (12) to brake the wheels (9). The first brake control unit further determines whether a brake torque of the brake actuator (12) on the wheels (9) fails. If yes, the first brake control unit controls the motor (6) to brake the corresponding wheel (9) through the motor controller (2).
Abstract:
The embodiments of the present application disclose a stability control system and a stability control method for a four-wheel drive electric vehicle and the four-wheel drive electric vehicle. In the stability control system, when the lateral acceleration is equal to or greater than an acceleration threshold, at least one of a first braking force signal, a second braking force signal, a first logic signal and a second logic signal is obtained. When the first logic signal is obtained, the body of the electric vehicle is controlled to keep stable. When the first braking force signal and the second logic signal are obtained, a motor is controlled to apply braking force to an outside front wheel. When the second braking force signal and the second logic signal are obtained, motors are controlled to apply braking force to the outside front wheel and an inside rear wheel.
Abstract:
The design is the visual features of a train shown in solid lines in the drawings, whether those features are features of one of shape, configuration, ornament or pattern or are a combination of any of these features.Figure 1 is a front view of a train; the rear view is a symmetrical mirror image of the first view;Figure 2 is a left view of the train of Figure 1; the right view is a symmetrical mirror image of the left view;Figure 3 is a top view of the train of Figure 1;Figure 4 is a first perspective view of the train of Figure 1; andFigure 5 is a second perspective view of the train of Figure 1.Drawings of the design are included.
Abstract:
A power transmission system for a vehicle includes: an engine; input shafts, each of the input shafts being provided with a shift driving gear thereon; output shafts, each of the output shafts being provided with a shift driven gear configured to mesh with a corresponding shift driving gear; a generator gear fixed on one of the output shafts; a reverse output gear configured to rotate together with or to disengage from a shift driving gear; an output idler gear configured to engage with one of the output shafts so as to rotate together with the output shaft or disengage from the output shaft so as to rotate with the output shaft at different speeds; a motor power shaft configured to rotate together with the generator gear; and a first motor generator configured to rotate together with the motor power shaft. A vehicle including the power transmission system is also provided.
Abstract:
The present disclosure discloses a vehicle and a coasting feedback control method for the same. The coasting feedback control method includes the following steps: detecting the current speed of a vehicle, the depth of a braking pedal of the vehicle, and the depth of an accelerator pedal; and when the current speed of the vehicle is greater than a preset speed, both the depth of the braking pedal and the depth of the accelerator pedal are 0, and the current gear of the vehicle is gear D, when the vehicle is not in a cruise control mode and an anti-lock braking system of the vehicle is in a non-working state, controlling the vehicle to enter a coasting feedback control mode, where when the vehicle is in the coasting feedback control mode, a coasting feedback torque of a first motor generator and a coasting feedback torque of a second motor generator are distributed according to a selected coasting feedback torque curve of the vehicle.
Abstract:
A power transmission system for a vehicle and a vehicle including the same are provided. The power transmission system includes: an engine unit configured to generate power; a transmission unit adapted to selectively couple with the engine unit, and configured to transmit the power generated by the engine unit; a first motor generator coupled with the transmission unit; an output unit configured to transmit the power output by the transmission unit to at least one of front and rear wheels of the vehicle; a power switching device adapted to enable or interrupt a power transmitting between the transmission unit and the output unit; and a second motor generator configured to drive the at least one of the front and rear wheels.