Abstract:
A thin film transistor liquid crystal display (TFT-LCD) array substrate comprising a gate line and a data line formed on a base substrate. The gate line and the data line intersect with each other to define a pixel region, in which a pixel electrode and a thin film transistor (TFT) are formed, and a first insulating layer and a second insulating layer are interposed between the gate line and the data line, and the pixel electrode is disposed between the first insulating layer and the second insulating layer. A method of manufacturing a TFT-LCD is also disclosed.
Abstract:
A method for manufacturing a ray detector array substrate is provided, comprising: forming a thin film transistor, a first data line and a receiving electrode on a base substrate; forming a first passivation layer on the base substrate; forming a first via hole and a second via hole in regions of the first passivation layer corresponding to the first data line and the receiving electrode, respectively; forming a photoelectric conversion layer covering the first passivation layer on the base substrate, the first via hole and the second via hole being filled with a material of the photoelectric conversion layer; etching the photoelectric conversion layer to retain a first portion of the photoelectric conversion layer inside the first via hole, and a second portion of the photoelectric conversion layer above and corresponding to the second via hole.
Abstract:
The technical solution provides a touch display substrate, a fabrication method thereof, and a touch display device. The touch display substrate includes a conductive bridge (9) and a touch-control signal lead (7) formed over a base substrate (1). The touch-control signal lead (7) is in contact with a first surface portion of the conductive bridge (9). A passivation layer (2) is formed over the touch-control signal lead (7) and the conductive bridge (9). The passivation layer (2) includes a via-hole (3) to expose a second surface portion of the conductive bridge (9). A touch electrode (8) is formed over the passivation layer (2) and being connected to the conductive bridge (9). Through the via-hole (3), the touch electrode (8) is connected to the conductive bridge (9) and further connected to the touch-control signal lead (7).
Abstract:
A display substrate, a manufacturing method thereof and a display device are provided. The display substrate includes: a base substrate, a display region disposed on the base substrate, and a peripheral region disposed at a periphery of the display region, and the peripheral region is provided with a filling area recessed toward the base substrate; the filling area is provided with an alignment mark and a filling material; and the filling material is configured for filling the filling area. The filling material is provided in filling the filling area of the display substrate, to reduce or eliminate a segment difference at the filling area, and further to avoid the incorrect alignment of liquid crystal molecules caused by the segment difference in the rubbing process, and finally to avoid poor display due to uneven display of a display panel in the working process.
Abstract:
The embodiments of the present disclosure provide a method for manufacturing a liquid crystal display device which includes a liquid crystal panel, and the method includes transforming the liquid crystal in a liquid crystal panel into a solid state before processing the liquid crystal panel, and transforming the liquid crystal in the liquid crystal panel into a liquid state after the liquid crystal panel is processed. In the method, the liquid crystal in a liquid crystal panel is transformed into a solid state before processing the liquid crystal panel, which can greatly enhance the pressure resistance of the liquid crystal panel, and prevent the pressure in the processing from breaking the liquid crystal panel.
Abstract:
An Oxide TFT, a preparation method thereof, an array substrate and a display device are described. The method includes forming a gate electrode, a gate insulating layer, a channel layer, a barrier layer, as well as a source electrode and a drain electrode on a substrate; the channel layer is formed by depositing an amorphous oxide semiconductor film in a first mixed gas containing H2, Ar and O2. By depositing a channel layer in a first mixed gas containing H2, Ar and O2, the hysteresis phenomenon of the TFT can be mitigated effectively to improve the display quality of the display panel.
Abstract:
An amorphous-silicon photoelectric device and a fabricating method thereof are disclosed. The amorphous-silicon photoelectric device includes: a substrate; a thin-film transistor and a photosensor with the photodiode structure, which are provided at different positions on the substrate; and a contact layer; in which the contact layer is located below the photosensor, and the contact layer is partially covered by the photosensor, moreover, the contact layer and the gate-electrode layer in the thin-film transistor are provided in a same layer and of a same material. According to the technical solutions of the present disclosure, the fabricating procedure of an a-Si photoelectric device can be simplified, thereby improving the fabrication efficiency and reducing costs.
Abstract:
A method for manufacturing an array substrate which includes: depositing a gate metal film on a base substrate, and forming a first pattern including the gate electrode by a first patterning process; depositing a gate insulating film, a first transparent conductive film, a source/drain metal film and a doped a-Si film sequentially, and forming a second pattern including the pixel electrode, the source electrode, the drain electrode and a doped semiconductor layer by a second patterning process; depositing an a-Si film, and forming a third pattern including a TFT channel, the semiconductor layer and a gate insulating layer via-hole by a third patterning process; depositing a passivation layer film, and forming a fourth pattern including a passivation layer via-hole by a fourth patterning process, the passivation layer via-hole being arranged at a position corresponding to the gate insulating layer via-hole; and depositing a second transparent conductive film on the base substrate with the fourth pattern, and forming a fifth pattern including an electrical connector by a fifth patterning process.
Abstract:
The present disclosure provides an array substrate, its manufacturing method and a display device. The array substrate includes a thin film transistor. A source electrode and a drain electrode are located above a pattern of an active layer, and the source electrode and the drain electrode are in electrical contact with the pattern of the active layer through a first via-hole penetrating an insulating structure. Before the formation of the source electrode and the drain electrode, the pattern of the active layer is subjected to ion injection through the first via-hole, so as to form an ion injection region.
Abstract:
An array substrate, a display device and a manufacturing method of the array substrate. The array substrate includes: a base substrate (1) and a plurality of pixel units located on the base substrate (1), each of the pixel units including a thin film transistor unit. The thin film transistor unit includes: a gate electrode located on the base substrate (1), a gate insulating layer (3) located on the gate electrode, an active layer (4) located on the gate insulating layer (3) and opposed to the gate electrode in position, an ohmic layer (5) located on the active layer (4), a source electrode (6a) and a drain electrode (6b) that are located on the ohmic layer (5) and a resin passivation layer (8) that are located on the source electrode (6a) and the drain electrode (6b) and covers the substrate.