Abstract:
A system and method for calibrating an interior permanent magnet (IPM) motor with an optimized maximum torque per ampere trajectory curve. The system and method use a real-time particle swarm technique that requires less known parameters than standard maximum torque per ampere trajectory techniques.
Abstract:
A method and apparatus for controlling an electric motor. An electric motor apparatus has an electric motor with motor stator windings, a battery, battery control module coupled to the battery and configured to monitor and detect a state of the battery, and a motor control unit coupled to the battery and the batter control module and being configured to select an operation of the electric motor based on a signal from the battery control module representing the state of the battery. The motor control unit selects a normal motor control operation, a power dissipation motor control operation, or a discharge operation. During the power dissipation motor control operation, power from brake torque is dissipated in the motor stator windings of the electric motor.
Abstract:
A system and method for compensating a resolver are disclosed. Briefly described, one embodiment receives at least one output signal from the resolver, the resolver detecting a current position of a rotor coupled to the resolver; determines if the current position of the rotor is detected by a first pole-pair of the resolver or if the current position is detected by a second pole-pair of the resolver; in response to determining that the current position of the rotor is detected by the first pole-pair, synchronizes the output signal from the resolver with a first resolver angle error information; and in response to determining that the current position of the rotor is detected by the second pole-pair, synchronizes the output signal from the resolver with a second resolver angle error information.
Abstract:
A system and method for controlling a permanent magnet motor are disclosed. Briefly described, one embodiment receives a torque command and a flux command; receives information corresponding to a direct current (DC) bus voltage and a motor speed; computationally determines feedforward direct-axis current information and feedforward quadrature-axis current information from a plurality of parameters associated with the permanent magnet motor; determines a current signal (idq*) based upon at least the requested torque command, the flux command, the DC bus voltage, the motor speed, the feedforward direct-axis current information, and the feedforward quadrature-axis current information; and controls a power inverter that converts DC power into alternating current (AC) power that is supplied to the permanent magnet motor, such that the permanent magnet motor is operated in accordance with the determined idq*.
Abstract:
A control system, method and article allows a monitoring module to monitor operation of a main controller in an electric drive, by providing questions and evaluating the accuracy and/or timeliness of responses from the main controller. Upon detection of an excessive number of incorrect or late responses, the monitoring module can shutdown operation, and may provide an alternative communications path, thereby preventing corrupt data from reaching a vehicle network, while providing communications for diagnostic and recovery such as by provision of new software or firmware instructions. The main controller may monitor the operation of the monitoring module, taking appropriate action if a fault is detected. Disabling a supply of power to a traction motor may be based on current operating conditions, such as speed.
Abstract:
A multilevel inverter control system having logic configured to substantially minimize and area between a target waveform and a step signal of a multilevel inverter.
Abstract:
A method and apparatus for controlling a permanent magnet synchronous motor (8) coupled to a turbo engine such that transient current and steady state current are minimized. The method comprises the steps of, for a given DC bus voltage, determining an acceleration profile as a function of a voltage-offset value, a low-speed rated speed value, a high-speed rated speed value, a first desired speed for warming up the turbo engine, and a second desired speed where the turbo engine has sufficient torque to accelerate to its rated speed without the aid of the permanent magnet synchronous motor (8).