摘要:
An optically active composition (100) for optical applications has been identified. The optically active composition (100) can include at least one cyclic molecule having a nanocore (112) disposed within the cyclic molecule to form a filled ring (108). The composition (100) is optically transmissive for at least one photonic wavelength that would not otherwise be transmitted by the composition (100) if the nanocore were absent from the cyclic molecule. The cyclic molecule can be a carbon ring, an aromatic ring, or a heterocyclic ring. The filled ring (108) can be attached to a chiral molecule which is a repeat unit (102) in a polymeric backbone. A second filled ring (110) which causes the composition to be optically transmissive at a second wavelength also can be attached to the chiral molecule (102) as well. An electric field can be applied to the filled ring (108) to adjust the wavelength at which filled ring (108) is transmissive.
摘要:
A method for making an electronic device includes positioning first and second members so that opposing surfaces thereof are in contact with one another, the first member comprising silicon and the second member comprising a low temperature co-fired ceramic (LTCC) material. The method further includes anodically bonding together the opposing surfaces of the first and second members to form a hermetic seal therebetween. The anodic bonding provides a secure and strong bond between the members without using adhesive. The method may further include forming at least one cooling structure in at least one of the first and second members. The least one cooling structure may comprise at least one first micro-fluidic cooling structure in the first member, and at least one second micro-fluidic cooling structure in the second member aligned with the at least one first micro-fluidic cooling structure.
摘要:
A circuit for processing radio frequency signals. The circuit includes a substrate where the circuit can be placed. The substrate can be a meta-material and can incorporate at least one dielectric layer. A four port circuit and at least one ground can be coupled to the substrate. The dielectric layer can include a first region with a first set of substrate properties and a second region with a second set of substrate properties. Substrate properties can include permittivity and permeability. A substantial portion of the four port circuit can be coupled to the second region. The permittivity and/or permeability of the second region can be higher than the permittivity and/or permeability of the first region. The increased permittivities and/or permeabilities can reduce a size of the four port circuit and effect a change in a variety of electrical characteristics associated with the four port circuit.
摘要:
A circuit (100) for processing radio frequency signals includes a substrate (50) where the circuit can be placed. The substrate can be a meta-material and can incorporate at least one dielectric layer (20, 30, or 40). The circuit such as a three port circuit and at least one ground can be coupled to the substrate. The dielectric layer can include a first region (40) with a first set of substrate properties and a second region (20) with a second set of substrate properties. Substrate properties can include permittivity and permeability. A portion (32 or 46) of the three port circuit can be selectively coupled to the second region. The permittivity and/or permeability of the second region can be higher than the permittivity and/or permeability of the first region. The increased permittivities and/or permeabilities can reduce a size of the three port circuit and effect a change in a variety of electrical characteristics associated with the three port circuit.
摘要:
The invention concerns an impedance transforming device that includes a dielectric circuit board substrate. The substrate has at least one region that has a relative permeability or a relative permittivity different from a remaining portion of the substrate. In order to control the permeability and permittivity, in this way, meta-materials can be used to selectively modify portions of the substrate. A transmission line transformer is disposed on the substrate and coupled to the region.
摘要:
The invention concerns an efficient loop antenna of reduced size. The antenna is formed on a dielectric substrate disposed on a conductive ground plane. The substrate has a plurality of regions of differing substrate characteristics. An elongated conductive antenna element is arranged in the form of a loop and disposed on a first region of the substrate. The antenna element can have first and second adjacent end portions separated by a gap. The first region of the substrate has a relative permeability that is higher as compared to a second region of the substrate on which the remainder of the circuitry is disposed. According to one aspect of the invention, the relative permeability of the first region is greater than 1.
摘要:
A circuit for processing radio frequency signals. The circuit includes a substrate where the circuit can be placed. The substrate can be a meta material and can incorporate at least one dielectric layer (100). A directional coupler (106) and at least one ground (112) can be coupled to the substrate. The dielectric layer can include a first region (102) with a first set of substrate properties and a second region (104) with a second set of substrate properties. The substrate properties can include a permittivity and a permeability. A substantial portion of the directional coupler (106) can be coupled to the second region (104). The permittivity and/or permeability of the second region (104) can be higher than the permittivity and/or permeability of the first region (102). The increased permittivities and/or permeabilities can reduce a size of the directional coupler (106) and effect a change in a variety of electrical characteristics associated with the directional coupler (106).
摘要:
A crossed slot fed microstrip antenna (100). The antenna (100) includes a conducting ground plane (125), which has at least one crossed slot (125), and at least two feed lines (105). The feed lines (105) have respective stub regions (115) that extend beyond the crossed slot (125) and transfer signal energy to or from the crossed slot (125). The antenna (100) also includes a first substrate (150) disposed between the ground plane (120) and the feed lines (105). The first substrate (150) includes a first region and at least a second region, the regions having different substrate properties. The first region is proximate to at least one of the feed lines (105).
摘要:
A method for making an electronic device includes positioning first and second members so that opposing surfaces thereof are in contact with one another, the first member comprising silicon and the second member comprising a low temperature co-fired ceramic (LTCC) material. The method further includes anodically bonding together the opposing surfaces of the first and second members to form a hermetic seal therebetween. The anodic bonding provides a secure and strong bond between the members without using adhesive. The method may further include forming at least one cooling structure in at least one of the first and second members. The least one cooling structure may comprise at least one first micro-fluidic cooling structure in the first member, and at least one second micro-fluidic cooling structure in the second member aligned with the at least one first micro-fluidic cooling structure.
摘要:
A circuit for processing radio frequency signals. The circuit includes a substrate where the circuit can be placed. The substrate can be a meta material and can incorporate at least one dielectric layer. A quarter-wave transformer and at least one ground can be coupled to the substrate. The dielectric layer can include a first region with a first set of substrate properties and a second region with a second set of substrate properties. Substrate properties can include a permittivity and a permeability. A substantial portion of the quarter-wave transformer can be coupled to the second region. The permittivity and/or permeability of the second region can be higher than the permittivity and/or permeability of the first region.