Abstract:
A process for inhibiting the passage of dopant from a gate electrode into a thin gate oxide comprises nitridation of the upper surface of the thin gate oxide, prior to formation of the gate electrode over the gate oxide, to thereby form a barrier of nitrogen atoms in the upper surface region of the gate oxide adjacent the interface between the gate oxide and the gate electrode to inhibit passage of dopant atoms from the gate electrode into the thin gate oxide during annealing of the structure. In one embodiment, a selective portion of silicon oxide on a silicon substrate may be etched to thin the oxide to the desired thickness using a nitrogen plasma with a bias applied to the silicon substrate. Nitridation of the surface of the etched silicon oxide is then carried out in the same apparatus by removing the bias from the silicon substrate.
Abstract:
A MOSFET having a buried channel structure and an adjacent surface channel structure between a source region and a drain region. The surface channel structure is preferably formed adjacent the source region via angular implantation techniques. By combining the advantages of the surface channel device with the buried channel device, the resulting hybrid MOSFET structure has improved drive current and switching characteristics.
Abstract:
An isolation trench in a silicon semiconductor substrate is provided with a barrier region containing nitrogen atoms formed in the trench, contiguous with the silicon semiconductor substrate surfaces of the trench. The novel isolation trench structure of the invention is formed by forming an isolation trench in a silicon semiconductor substrate; forming in the isolation trench a barrier region by treating the trench structure with nitrogen atoms from a nitrogen plasma; and then forming a silicon oxide layer over the barrier region in the trench to confine the nitrogen atoms in the barrier region. In a preferred embodiment, a silicon oxide liner is first formed over the silicon semiconductor substrate surfaces of the trench, and then the trench structure is treated with nitrogen atoms from a nitrogen plasma to form, on the silicon semiconductor substrate surfaces of the trench, a barrier layer which contains silicon atoms, oxygen atoms, and nitrogen atoms.
Abstract:
A silicon semiconductor integrated circuit includes an insulative field oxidation layer which substantially does not encroach under active circuit elements of the integrated circuit. The field oxidation layer is formed of oxidized amorphous silicon created by bombardment of a silicon substrate with noble gas ions. The amorphous silicon oxidizes at a rate much faster than crystalline silicon so that when the field oxidation layer is formed crystalline silicon foundations for the active circuit elements are left substantially intact. The crystalline silicon foundations are formed by using appropriate shield elements during the noble gas ion bombardment. This noble gas ion bombardment also has the advantage of eliminating dislocation defects which may be present in the field oxidation area so that these defects do not propagate into the crystal lattice of the silicon during subsequent heating and cooling cycles. Also, the amorphous silicon relieves surface layer stresses which may be present from prior processes or because of prior morphological structural elements formed on the silicon substrate. A boron ion bombardment may also be used to further inhibit loss of P-well dopant to the oxidant forming the field oxidation layer and preserving a desired high field threshold voltage and robust field isolation for the integrated circuit.
Abstract:
Provided is a method of fabricating gate dielectric layers having variable thicknesses and compositions over different regions of a semiconductor wafer. In a preferred embodiment of the present invention, a gate oxide layer is first grown over the various regions. Regions that are to have a relatively thicker, unhardened gate dielectric are masked and the wafer is exposed to a remote low energy nitrogen plasma. After the nitridization process is completed, the mask is removed and the wafer is exposed to further oxidation. The regions where oxynitrides have been formed act as a barrier to the oxidation process. Consequently, different oxide thicknesses can be grown on the same wafer, thinner and hardened where nitridization has been performed, and thicker and not hardened in those regions that were masked during the nitridization. Variable thickness gate dielectrics in accordance with the present invention may be particularly advantageous in semiconductor integrated circuits involving both digital and analog devices.
Abstract:
A process is disclosed for forming one or more doped regions beneath the surface of a single crystal semiconductor substrate, such as retrograde wells or deeper source/drain regions, by implantation at low energy which comprises orienting the crystal lattice of the semiconductor substrate, with respect to the axis of the implantation beam, i.e., the path of the energized atoms in the implantation beam, to maximize the number of implanted atoms which pass between the atoms in the crystal lattice. This results in the peak concentration of implanted atoms in the crystal lattice of the single crystal semiconductor substrate being deeper than the peak concentration of implanted atoms in the substrate would be if the axis of the implantation beam were not so oriented with respect to the crystal lattice of the semiconductor substrate during implantation.
Abstract:
A process and resulting product is described for forming an oxide in a semiconductor substrate which comprises initially implanting the substrate with atoms of a noble gas, then oxidizing the implanted substrate at a reduced temperature, e.g., less than 900.degree. C., to form oxide in the implanted region of the substrate, and then etching the oxidized substrate to remove a portion of the oxide. The resulting oxidation produces a dual layer of oxide in the substrate. The upper layer is an extremely porous and frothy layer of oxide, while the lower layer is a more dense oxide. The upper porous layer of oxide can be selectively removed from the substrate by a mild etch, leaving the more dense oxide layer in the substrate. Further oxide can then be formed adjacent the dense layer of oxide in the substrate, either by oxide deposition over the dense oxide or by growing further oxide beneath the dense oxide layer. The initial oxide formed by the process appears to be temperature independent, at temperatures of 900.degree. C. or less, with oxide formation apparently dependent upon the extent of the implanted regions of the substrate, rather than upon temperature, resulting in thermal savings. Furthermore, the excess implanted noble gas in the substrate adjacent the oxide formed therein can have beneficial effects in inhibiting the formation of parasitic field transistors and in greater control over field thresholds.
Abstract:
Body to drain junction breakdown, due to avalanching in DMOST devices, can be controlled. The invention lowers the electric field gradients in the vicinity of the PN junction. The structure employed to enhance breakdown behavior is specifically applied to a vertical DMOST. The N type doping profile in the vicinity of the body to drain junction is tailored by constructing a P-nu-N-N.sup.+ type diode structure where nu is a low N type impurity concentration region. The N type region is of higher impurity concentration and is more extensive. With the nu region having one-half of the impurity concentration of the N region and an extent of about two microns, the avalanche breakdown voltage is about 27% higher than the conventional PN junction diode. By making the nu region impurity concentration one-fourth that of the N region, the breakdown voltage is 40% higher.
Abstract:
Germanium is used to significantly enhance the drift mobilities of minority carriers in the channels of N-channel and P-channel metal-oxide-semiconductor (MOS) transistors with silicon substrates. Germanium processing is also used to enhance the source/drain contact conductance for MOS devices. Methods are disclosed for forming a germanium-rich interfacial layer utilizing a germanium implant and wet oxidation or growing a silicon-germanium alloy by molecular beam epitaxy.
Abstract:
A process is disclosed for controlling the diffusion of aluminum in silicon for the fabrication of monolithic pn junction isolated integrated circuits. Germanium is incorporated into the silicon where isolation or p-well diffusion of aluminum is to occur. Aluminum diffusion is modified by the presence of the germanium so that channeling and out diffusion are controlled. The control is enhanced when boron is incorporated into the silicon along with the aluminum.