Abstract:
Disclosed is a composite filter media. The composite filter media is formed from multiple layers of media material including a nanofiber media layer, where the layers are laminated, bound, or otherwise composited to each other. The composite filter media can comprise at least one nanofiber layer comprising polymeric media material having a geometric mean fiber diameter of about 100 nm to 1 μm, and fibers configured in a gradient such that ratio of the geometric mean diameter of fibers at the upstream face of the nanofiber layer to the geometric mean diameter of fibers at the downstream face of the nanofiber layer is about 1.1 to 2.8, preferably about 1.2 to 2.4.
Abstract:
Disclosed is composite media that may be utilized in coalescing elements, coalescing cartridges, coalescing systems, and coalescing methods. The disclosed media typically is a composite or laminate material formed by bonding adjacent layers of media material comprising bicomponent fibers.
Abstract:
A system and method for determining a condition of a filter filtering fuel associated with an engine. Input information relating to the operation of the engine is provided by a plurality of sensors. At least some of the input information is used to determine a plurality of input variables, the plurality of input variables representing a plurality of engine operating conditions including engine run time, engine torque and engine speed. An algorithm incorporating the input variables is used to determine the condition of the filter. Information concerning the condition of the filter may be output to a user such as an operator or service provider.
Abstract:
A method and system is provided for regenerating and cleaning an air-oil coalescer of a crankcase ventilation system of an internal combustion engine generating blowby gas in a crankcase. The coalescer coalesces oil from the blowby gas. The method and system includes regenerating and cleaning the coalescer by intermittent rotation thereof.
Abstract:
Composite filter media is formed from multiple layers of media material including a nanofiber media layer, where the layers are laminated, bound, or otherwise composited to each other. The composite filter media can comprise at least one nanofiber layer comprising polymeric media material having a geometric mean fiber diameter of about 100 nm to 1 μm, and fibers configured in a gradient such that ratio of the geometric mean diameter of fibers at the upstream face of the nanofiber layer to the geometric mean diameter of fibers at the downstream face of the nanofiber layer is about 1.1 to 2.8, preferably about 1.2 to 2.4.
Abstract:
Disclosed are modular filter-in-filter elements, namely an outer filter element and an inner filter element which may be assembled to form a filter cartridge for use in separation methods and systems. The outer filter element typically functions as a coalescing element and the inner element typically functions as a particulate filter element. The disclosed filter cartridges may be structured for separating water from a hydrocarbon-based liquid fuel as the fuel moves through the cartridge from outside to inside.
Abstract:
A filter media comprises a first fiber layer and a second fiber layer positioned downstream of the first fiber layer. The first fiber layer has a first geometric mean fiber diameter of less than 1 μm such that the geometric standard deviation of fiber diameter is greater than 2. The second fiber layer has a second geometric mean fiber diameter of less than 1 μm such that the geometric standard deviation of fiber diameter is less than 2.
Abstract:
Various example embodiments relate to a system that includes a nozzle. A dosing line is connected to the nozzle and a fuel dosing module. The fuel dosing module is in fluid communication with the dosing line and includes an outlet in fluid communication with the dosing line. An air inlet is positioned upstream of the outlet and is configured to receive air. A fuel inlet is positioned upstream of the outlet and is configured to receive fuel. A fuel valve is positioned upstream of the outlet and downstream of the fuel inlet and is configured to control the flow of fuel. The fuel dosing module is configured to combine the fuel and the air upstream of the outlet and downstream of the fuel valve to generate an air-fuel fluid, wherein the air-fuel fluid removes particles from the nozzle.
Abstract:
A filter assembly includes a filter housing having a longitudinal axis, the filter housing divided into a first filter chamber and a second filter chamber, a first element bottom endplate, a second element top endplate, an intermediate endplate positioned along the longitudinal axis between the second element top endplate and the first element bottom endplate, a first filter element housed within the first filter chamber and comprising first filter media positioned between the first element bottom endplate and the intermediate endplate, and a second filter element housed within the second filter chamber and comprising second filter media positioned between the second element top endplate and the intermediate endplate.
Abstract:
This disclosure generally relates to perforated filter media and coalescing filter elements utilizing perforated filter media. One example coalescing filter element is structured to separate a dispersed phase from a continuous phase of a mixture. The filter media includes a first coalescing layer. The first coalescing layer includes a first filter media. The first filter media has a plurality of pores and a first perforation. Each of the plurality of pores is smaller than the first perforation. The first perforation is formed in the first filter media and extends through the first filter media. The plurality of pores are structured to capture a portion of the dispersed phase. The first perforation is structured to facilitate the transmission of coalesced drops of the dispersed phase through the first coalescing layer such that the coalesced drops of the dispersed phase are separated from the portion of the dispersed phase captured in the first coalescing layer.