Abstract:
A method for transporting communications signals includes receiving an analog IF signal at a first unit. The analog IF signal includes a first carrier having a first frequency and a first bandwidth and a second carrier having a second frequency different from the first frequency and a second bandwidth. The analog IF signal is converted to a digitally sampled IF signal having the first carrier located in a first Nyquist zone, the second carrier located in a second Nyquist zone, an image of the first carrier located in a third Nyquist zone, and an image of the second carrier located in the third Nyquist zone. The image of the first carrier and the image of the second carrier is transmitted from the first unit to a second unit, where the image of the first carrier and the image of the second carrier is then converted to the analog IF signal.
Abstract:
Embodiments may allow remote base transceiver stations (BTSs) physically located away from a local source of users to be able to provide local service as if the remote BTSs were at or near the local source of users. Some embodiments may include a plurality of BTSs, each having one or more sectors, and one or more digital access units (DAUs). Embodiments may also include a plurality of repeater digital units (RDUs), where each RDU may be configured to communicate to at least one of the plurality of BTSs and may be operable to route signals optically to the one or more DAUs. Embodiments may also include a plurality of digital remote units (DRUs) located at a location remote to the one or more DAUs, wherein the plurality of remote DRUs may be operable to transport signals to the one or more DAUs.
Abstract:
A remote radio head unit (RRU) system for multiple operating frequency bands, multi-channels, driven by a single or more wide band power amplifiers. More specifically, the present invention enables multiple-bands RRU to use fewer power amplifiers in order to reduce size and cost of the multi-band RRU. The present invention is based on the method of using duplexers and/or interference cancellation system technique to increase the isolation between the transmitter signal and receiver signal of the RRU.
Abstract:
A digital predistortion linearization method is provided for increasing the instantaneous or operational bandwidth for RF power amplifiers employed in wideband communication systems. Embodiments of the present invention provide a method of increasing DPD linearization bandwidth using a feedback filter integrated into existing digital platforms for multi-channel wideband wireless transmitters. An embodiment of the present invention utilizes a DPD feedback signal in conjunction with a low power band-pass filter in the DPD feedback path.
Abstract:
An efficient baseband predistortion linearization method for reducing the spectral regrowth and compensating memory effects in wideband communication systems using effective multiplexing modulation technique such as wideband code division multiple access and orthogonal frequency division multiplexing is disclosed. The present invention is based on the method of piecewise pre-equalized lookup table based predistortion, which is a cascade of a lookup table predistortion and piecewise pre-equalizers.
Abstract:
A RF-digital hybrid mode power amplifier system for achieving high efficiency and high linearity in wideband communication systems is disclosed. The present invention is based on the method of adaptive digital predistortion to linearize a power amplifier in the RF domain. The present disclosure enables a power amplifier system to be field reconfigurable and support multi-modulation schemes (modulation agnostic), multi-carriers and multi-channels. As a result, the digital hybrid mode power amplifier system is particularly suitable for wireless transmission systems, such as base-stations, repeaters, and indoor signal coverage systems, where baseband I-Q signal information is not readily available.
Abstract:
The present disclosure is a novel utility of a software defined radio (SDR) based Distributed Antenna System (DAS) that is field reconfigurable and support multi-modulation schemes (modulation-independent), multi-carriers, multi-frequency bands and multi-channels. More specifically, the present invention relates to a DAS utilizing one or more Daisy-Chained Rings of Remote Units. The present invention enables a high degree of flexibility to manage, control, enhance, facilitate the usage and performance of a distributed wireless network such as Flexible Simulcast, automatic traffic load-balancing, network and radio resource optimization, network calibration, autonomous/assisted commissioning, carrier pooling, automatic frequency selection, frequency carrier placement, traffic monitoring, traffic tagging, pilot beacon, etc. As a result, a DAS in accordance with the present invention can increase the efficiency and traffic capacity of the operators' wireless network.
Abstract:
A system for indoor localization using satellite navigation signals in a Distributed Antenna System includes a plurality of Off-Air Access Units (OAAUs). Each of the plurality of OAAUs is operable to receive an individual satellite navigation signal from at least one of a plurality of satellites and operable to route signals optically to one or more DAUs. The system also includes a plurality of remote DRUs located at a remote location. The plurality of remote DRUs are operable to receive signals from a plurality of local DAUs. The system further includes an algorithm to delay each individual satellite navigation signal for providing indoor localization at each of the plurality of DRUs and a GPS receiver at the remote location used in a feedback loop with the DRU to control the delays.
Abstract:
A system for routing signals in a Distributed Antenna System includes a plurality of Digital Access Units (DAUs) and a plurality of Digital Remote Units (DRUs). The plurality of DAUs are coupled and operable to route signals between the plurality of DAUs. The plurality of DRUs are coupled to the plurality of DAUs and operable to transport signals between DRUs and DAUs. The system also includes a plurality of Base Transceiver Stations (BTS) and a plurality of Base Transceiver Station sector RF connections coupled to the plurality of DAUs and operable to route signals between the plurality of DAUs and the plurality of Base Transceiver Stations sector RF port connections. The system further includes one or more delay compensation merge units operable to delay signals transmitted from or received by each of the plurality of DRUs
Abstract:
Methods and apparatuses are presented for balancing non-uniformly distributed network traffic in a wireless communications system having a plurality of digital remote units (DRUs). In some embodiments, a method comprises partitioning the plurality of DRUs into a plurality of DRU sectors, and dynamically repartitioning the plurality of DRU sectors depending on traffic conditions in at least one of the DRU sectors, such that the repartitioning satisfies at least one of a soft capacity constraint or a hard capacity constraint. The dynamic repartitioning may be based on at least one optimization algorithm.