Abstract:
A method and apparatus are provided to reconstruct projection data obtained from CT imaging devices with offset detector geometries. According to one aspect of the present invention, a method is provided to reconstruct projection data obtained from CT imaging devices with offset detector geometries that includes the following steps: (i) matching projection data measured at opposing sides of the acquisition trajectory and splicing them together to generate a full, non-truncated projection data set; (ii) differentiation of the projection data; (iii) filtering the differentiated projection data with a filter, such as for example a Hilbert filter; (iv) applying redundancy weighting to the filtered projection data; and (v) back-projecting the redundancy weighted projection data to generate image data.
Abstract:
Computed tomography (CT) reconstruction includes reconstructing an axially extended reconstructed image from a measured cone beam x-ray projection data set (Pm), optionally having an off-center geometry. The reconstructing is performed for an extended volume (eFOV) comprising a reconstructable volume (rFOV) of the measured cone beam x ray data set that is extended along the axial direction. The projection data set may be weighted in the volume domain. Iterative reconstruction may be used, including initializing a constant volume and performing one or more iterations employing a first iterative update followed by one or more iterations employing a second, different iterative update. Alternatively, backprojection filtration (BPF) reconstruction may be used, including transforming the projection data set to a new geometry including finite differences between neighboring projection views and performing BPF using Hilbert filtering along a plurality of different directions and averaging the resultant reconstructed images to generate the final reconstructed image.
Abstract:
The present invention relates to an apparatus for generating an image of a moving object, wherein a movement of the object comprises a multiple of moving phases. The apparatus comprises a measured detection data providing unit (20) for providing measured detection data of the moving object, which have been detected by using a detection process and which are assigned to the moving phases. The apparatus comprises further a reconstruction unit (13) for reconstructing an image object of the object from the provided measured detection data and an adaptation unit (18) for adapting the image object for different moving phases such that simulated detection data are adapted to the measured detection data of the respective moving phase, wherein the simulated detection data are determined by simulating the detection process, which has been used for detecting the measured detection data assigned to the respective moving phase, with the image object.
Abstract:
The present invention relates to an image reconstruction device and a corresponding method for reconstructing a 3D image of an object (7) from projection data of said object (7). In order to obtain 3D images having sharp high-contrast structures and almost no image blur, and in which streak artifacts (and noise in tissue-like regions) are strongly reduced, an image reconstruction device is proposed comprising: a first reconstruction unit (30) for reconstructing a first 3D image of said object (7) using the original projection data, an interpolation unit (31) for calculating interpolated projection data from said original projection data, —a second reconstruction unit (32) for reconstructing a second 3D image of said object (7) using at least the interpolated projection data, a segmentation unit (33) for segmentation of the first or second 3D image into high-contrast and low-contrast areas, a third reconstruction unit (34) for reconstructing a third 3D image from selected areas of said first and said second 3D image, wherein said segmented 3D image is used to select image values from said first 3D image for high-contrast areas and image values from said second 3D image for low-contrast areas.
Abstract:
A method for generating or reconstruction of three-dimensional (3D) images corresponding to a structure of interest (60) including: acquiring a plurality of image projections corresponding to a structure of interest (60); applying a shape model (66) at a selected 3D seed point (64); and adapting the shape model (66) to represent the structure of interest (60), yielding an adapted shape model. A system for generation and reconstruction of three-dimensional (3D) images. The system (10) includes: an imaging system (12) configured to provide projection data corresponding to a structure of interest (60); and a controller (50) in operable communication with the imaging system (50). The controller (50) is configured to: receive the projection data, (64); apply a shape model (66) at a selected 3D seed point (64); and adapt the shape model (66) to represent the structure of interest (60), thereby yielding an adapted shape model.
Abstract:
The invention relates to a method for controlled braking of an electrically powered lifting action in the event of a failure, such that at least one of the nominal values for “rotational direction” and/or “operating speed” and/or “door position” and/or “motor capacity” and/or “motor current” is ascertained and compared with an actual value, and such that a motorized braking process or motorized stopping process is triggered by a departure of the actual value from the nominal value that lies outside a predetermined range. In addition the invention relates to a device for applying said method.
Abstract:
A process for the preparation of fiber-reinforced plastic molding includes (1) shortening the fibers to a length of less than 30 mm; (2) introducing the fibers and the plastics present in the solid state, separately from one another, into a mixing chamber of a die press, wherein the plastic is in particulate form; (3) thoroughly mixing the plastic and fibers to give a solids mixture; (4) transporting the solids mixture through die orifices of the die press; (5) heating the solids mixture in the zone before or in the orifices of the die; (6) enclosing at least part or partly embedding the fibers by the plastic during or after the heating of the solids mixture; and (7) comminuting the granulated material for subsequent molding.
Abstract:
The present invention refers to an angiographic image acquisition system and method which can beneficially be used in the scope of minimally invasive image-guided interventions. In particular, the present invention relates to a system and method for graphically visualizing a pre-interventionally virtual 3D representation of a patient's coronary artery tree's vessel segments in a region of interest of a patient's cardiovascular system to be three-dimensionally reconstructed. Optionally, this 3D representation can then be fused with an intraoperatively acquired fluoroscopic 2D live image of an interventional tool. According to the present invention, said method comprises the steps of subjecting the image data set of the 3D representation associated with the precalculated optimal viewing angle to a 3D segmentation algorithm (S4) in order to find the contours of a target structure or lesion to be examined and interventionally treated within a region of interest and automatically adjusting (S5) a collimator wedge position and/or aperture of a shutter mechanism used for collimating an X-ray beam emitted by an X-ray source of a C-arm-based 3D rotational angiography device or rotational gantry-based CT imaging system to which the patient is exposed during an image-guided radiographic examination procedure based on data obtained as a result of said segmentation which indicate the contour and size of said target structure or lesion. The aim is to reduce the region of interest to a field of view that covers said target structure or lesion together with a user-definable portion of the surrounding vasculature.
Abstract:
The invention relates to adaptive roadmapping providing improved information to the user, comprising the following steps: providing pre-navigation image data representing at least a part of a vascular structure comprising a tree-like structure with a plurality of sub-trees; generating a vessel representation on the basis of pre-navigation image data; acquiring live image data of the object, which object comprises the vascular structure; wherein the vascular structure contains an element of interest; determining spatial relation of the pre-navigation image data and the live image data; analysing the live image data by identifying and localizing the element in the live image data; determining a sub-tree in which the element is positioned, wherein the determining is based on the localization of the element and on the spatial relation; and selecting a portion of the vascular structure based on the determined sub-tree; generating a combination of the live image data and an image of the selected portion of the vascular structure; and displaying the combination as a tailored roadmap. The element may be physical object, for example an interventional tool or device.
Abstract:
Cardiac CT imaging using gated reconstruction is currently limited in its temporal and spatial resolution. According to an exemplary embodiment of the present invention, an examination apparatus is provided in which an identification of a high contrast object is performed. This high contrast object is then followed through the phases, resulting in a motion vector field of the high contrast object, on the basis of which a motion compensated reconstruction is then performed.