Abstract:
A method of manufacturing a high-pressure fluid vessel includes forming a first portion of a high-pressure fluid vessel with a molding process. The high-pressure fluid vessel includes a stack of capsules. Each capsule includes a first domed end, a second domed end, and a semicylindrical portion extending between and connecting the first domed end to the second domed end. The method further includes forming a second portion of a high-pressure fluid vessel with the molding process. The second portion of the high-pressure fluid vessel is positioned adjacent to the first portion of the high-pressure fluid vessel. The second portion of the high-pressure fluid vessel is welded to the first portion of the high-pressure fluid vessel.
Abstract:
In a method of deriving the buckling condition of a cylindrical fiber moving in a fluid, a method of calculating the breakage condition thereof, and a method of forecasting the fiber length distribution, the flow field around a cylindrical fiber in a contraction flow is determined by a stricter method.The method of deriving the buckling condition, which is a condition under which buckling occurs, of a cylindrical fiber moving in a fluid, includes the step of multiplying a dimensionless fluid stress distribution, uniquely determined with regard to the aspect ratio r0′ of the cylindrical fiber, by μk (where μ represents fluid viscosity and k represents the contraction rate (velocity gradient in the length direction at the location where the fiber is present)) at a location where the cylinder is present, to obtain the fluid stress distribution acting on the cylinder surface in a contraction flow, and the step of using a minimum eigenvalue λ0, which is the threshold for buckling derived from the fluid stress distribution on the cylinder surface, to derive the buckling condition, wherein the buckling condition is represented by μk≥−(λ0Er0′4 log r0″)/4 (where E is Young's modulus and r0′ is the aspect ratio of the cylinder).
Abstract:
A yarn containing a core of continuous filaments of an inorganic material and a sheath of staple fibers of a thermoplastic polymer is provided. The yarn can be formed into a fabric or unidirectional tape, which can then be heated under pressure to form a composite material that has excellent mechanical strength yet is lightweight. The fabric can be molded into a composite material having a two-dimensional or three-dimensional shape because of its excellent drapability. The composite material can be used in aircraft parts, automotive parts, marine parts, consumer electronic parts, and other products.
Abstract:
A method of imparting electrical conductivity on an interlayer material is disclosed. In one non-limiting example the method includes forming the interlayer material from at least one layer of fabric of thermoplastic fibers. The method further includes, treating the surface of the interlayer material using an atmospheric-pressure plasma such that the surface of the interlayer material undergoes a surface activation. Additionally, the method includes depositing a layer of conductive material on the surface of the interlayer material such that the conductive material increases a conductivity of the interlayer material.
Abstract:
The present disclosure includes a method to make 3D fibers products, prepregs and composites, by using fastening components cross plies, strands, and yarns.
Abstract:
A three-dimensional fiber-reinforced composite includes a laminate having fiber bundle layers that are laminated in the laminating direction and include first and second outermost layers, primary and secondary retention yarns, and a binding yarn. The binding yarn includes a fold-back section, primary and secondary traverse yarn sections, a surface yarn section that extends along the surface of the second outermost layer in the direction substantially perpendicular to the secondary retention yarn, and a bifurcated section that is formed on the surface of the second outermost layer and connected to the primary and secondary traverse yarn sections. The bifurcated section is formed by crossing the surface yarn section that extends in opposite directions in the outside in the laminating direction of the secondary retention yarn.
Abstract:
Provided is commingled yarn excellent in strength. The commingled yarn comprises a continuous thermoplastic resin fiber and a continuous reinforcing fiber as fiber components, which has twist.
Abstract:
A three-dimensional fiber-reinforced composite includes a laminate having fiber bundle layers that are laminated in the laminating direction and include first and second outermost layers, primary and secondary retention yarns, and a binding yarn. The binding yarn includes a fold-back section, primary and secondary traverse yarn sections, a surface yarn section that extends along the surface of the second outermost layer in the direction substantially perpendicular to the secondary retention yarn, and a bifurcated section that is formed on the surface of the second outermost layer and connected to the primary and secondary traverse yarn sections. The bifurcated section is formed by crossing the surface yarn section that extends in opposite directions in the outside in the laminating direction of the secondary retention yarn.
Abstract:
A yarn containing a core of continuous filaments of an inorganic material and a sheath of staple fibers of a thermoplastic polymer is provided. The yarn can be formed into a fabric or unidirectional tape, which can then be heated under pressure to form a composite material that has excellent mechanical strength yet is lightweight. The fabric can be molded into a composite material having a two-dimensional or three-dimensional shape because of its excellent drapability. The composite material can be used in aircraft parts, automotive parts, marine parts, consumer electronic parts, and other products.
Abstract:
A structural health monitoring arrangement includes a component formed of fiber reinforced composite material with a plurality of electrical conducting fibers intrinsic to the composite defining electrical paths that run through the composite. The paths act as sensing paths running through the material and a detector watches for changes in electrical property indicative of a structural event. The paths may be configured as an open or a closed node grid whose electrical continuity is monitored directly or indirectly. Alternatively they may be fibers having a piezoresistive property and the changes in resistance may be monitored.