Abstract:
A method for operating a dosing device for metering an additive to an exhaust-gas treatment device includes determining a dosing amount of additive required by the exhaust-gas treatment device in step a). Subsequently, in step b), an operating mode for the dosing device is determined by carrying out at least steps b.1) and b.2). In step b.1), at least one characteristic operating value of at least one component of the dosing device is provided being definitive of a degree of aging of the dosing device. In step b.2), an operating mode for the dosing device is set in dependence on the characteristic operating value from step b.1). In step c), the dosing device is operated with the set operating mode so that the dosing amount required in step a) is supplied to the exhaust-gas treatment device. A motor vehicle having a dosing device is also provided.
Abstract:
A method and an exhaust-gas treatment device for regenerating an exhaust-gas purification component include charging at least one capacitor and heating at least one sub-volume of the exhaust-gas purification component to at least 900° C. by supplying at least a part of the energy stored in the capacitor. A particle burn-off reaction can be started from the at least one sub-volume for a large volume of exhaust-gas purification components. Exhaust-gas purification components in an exhaust system of an internal combustion engine can thus be completely regenerated in an energy-efficient manner. A vehicle having the exhaust-gas treatment device and carrying out the method is also provided.
Abstract:
A device for the aftertreatment of an exhaust gas of an internal combustion engine flowing through an exhaust line includes at least one dosing unit disposed in an opening of an exhaust pipe of the exhaust line and configured to add an exhaust-gas aftertreatment agent into the exhaust line. The dosing unit is enclosed by a cooling jacket, through which the dosing unit is fastened in the opening of the exhaust pipe. The cooling jacket is at least partially enclosed by a space or chamber delimited at least by the cooling jacket, the exhaust pipe, and a cover plate. The cover plate is connected to the exhaust pipe and spaced apart from the cooling jacket or the dosing unit by a gap. A motor vehicle having the device is also provided.
Abstract:
A mounting includes at least one electrode producing electric fields in an exhaust gas line, a disk of electrically insulating material having inflow and outflow sides and openings for exhaust gas, and at least one electrical conductor fastened to and/or in the disk. The electrical conductor is covered by the electrically insulating material at least on the inflow side and in electrical contact with the electrodes extending toward the outflow side. Since the electrical conductor is completely surrounded by insulating material during operation, an area that must be covered by a soot layer for a leakage current to develop is increased. The leakage length increases and one or more electrodes are in the exhaust gas at the same time. The soot particles deposited on the mounting and the exhaust gas line, need to be removed less often. An exhaust line device having at least one mounting is also provided.
Abstract:
A method for heating a delivery system providing reducing agent to an exhaust gas treatment device of an internal combustion engine having electrical components, includes determining a temperature in the delivery system, determining thermal energy required for error-free operation of the delivery system in a time interval, and introducing the required thermal energy into the delivery system by operating the electrical components within the time interval. The electrical components are activated at a time offset of at least 30 seconds. The required energy is determined so that the quantity of reducing agent to be delivered hourly is provided in liquid form at least four times after the time interval. The method prevents overloading of an electrical system of a motor vehicle when heating the delivery system and prevents ice cavity formation in a reducing agent in a tank. A motor vehicle having a delivery system is also provided.
Abstract:
An apparatus for measuring a filling level of a urea container by determining distance using sound waves (ultrasound) emitted by a sensor and echoes thereof, includes a urea container bottom and a sump with an overall height. The sump is adjacent the urea container bottom and located below the level of the urea container bottom. The sump is connected in an open manner to the urea container and bounded at the bottom by a sump bottom. The sensor is accommodated in the vicinity of the sump and, with a sound-emitting surface for emitting sound waves and receiving echoes of the sound waves, is fitted in the urea container with the sound-emitting surface of the sensor at most adjacent the level of the urea container bottom. A motor vehicle having the urea container is also provided.
Abstract:
A method for operating a metering apparatus for reducing agent includes providing the metering apparatus with at least one movable pump element movable between upper and lower reversal points to convey reducing agent into an exhaust-gas treatment component, and at least one position transmitter for determining a pass of the movable pump element. In the method, a first detection of a position of the movable pump element is provided by the position encoder. Subsequently, the movable pump element is moved and reducing agent is metered into the exhaust-gas treatment component. Thereupon, a second detection of a position of the movable pump element is provided by the position encoder, and subsequently a first quantity of reducing agent which is metered between the first and second detections is determined. A metering apparatus and a motor vehicle having a metering apparatus are also provided.
Abstract:
An exhaust-gas treatment device includes a honeycomb body wound and/or stacked with at least partially structured sheet-metal layers forming channels through which an exhaust gas can flow in axial direction from an inlet side to an outlet side. A first section of the sheet-metal layers ends flush at a first end surface associated with at least one of the sides and a second section of the sheet-metal layers ends at a second end surface associated with at least one of the sides. A spacing is provided between the first and second end surfaces because a first axial length of the first section is greater than a second axial length of the second section. The spacing forms a receptacle receiving a heating body, producing a simple electrically heatable exhaust-gas treatment device into which a heating body can be integrated during or after production of the honeycomb body.
Abstract:
A device for supplying liquid reducing agent for an exhaust gas treatment device, includes at least a tank with an interior in which reducing agent can be stored, an intake in the interior, a delivery device situated in a separate chamber in a tank bottom of the tank, a line leading from the delivery device to the exhaust gas treatment device and passing through the tank bottom at the separate chamber, and a cleaning layer covering the intake. An intermediate space is formed between the intake and the cleaning layer and contains at least one sponge element which can absorb reducing agent and from which the delivery device can extract reducing agent through the intake. A motor vehicle having the device is also provided.
Abstract:
A method for operating a metering device for a liquid additive includes providing the metering device with at least one pump having a movable pump element carrying out pumping movements to pump the liquid additive and at least one injector connected through a pressure line to a pressure side of the pump and being opened to meter the liquid additive. The injector is opened in a step a). In a step b), the liquid additive is then metered and the pumping movements are counted during metering. In a step c), the injector is then closed. In a step d), the number of pumping movements ascertained in step b) are then compared with the opening time of the injector between step a) and step c) in order to carry out a diagnosis of the operation of the metering device. A metering device and a motor vehicle are also provided.