Abstract:
Provided is an electrochromic display device including: a first substrate; a second substrate on the first substrate; an electrolyte layer disposed between the first substrate and the second substrate; a first transparent electrode provided between the electrolyte layer and the first substrate; second transparent electrodes provided between the electrolyte layer and the second substrate; a first electrochromic layer provided between the first transparent electrode and the electrolyte layer; and a second electrochromic layer provided between the second transparent electrodes and the electrolyte layer, wherein the second transparent electrodes each extend in a first direction and be disposed apart from each other in a second direction perpendicular to the first direction, the second electrochromic layer extends between the second transparent electrodes and contacts a lower surface of the second substrate, the first electrochromic layer includes an inorganic electrochromic material, and the second electrochromic layer includes an organic electrochromic material.
Abstract:
Provided is a nano structure for controlling optical properties of an optical device. The nano structure includes a substrate, a surface modification layer provided on the substrate to modify surface energy of the substrate, and a capping layer provided on the surface modification layer. The capping layer includes a convex portion having a convex profile away from the surface modification layer and a concave portion that is in contact with the surface modification layer.
Abstract:
The inventive concept provides an organic electronic device and a method of fabricating the same. The organic electronic device includes a flexible substrate configured to include a first region and a second region which are laterally spaced apart from each other, an organic light-emitting diode disposed in the first region of the flexible substrate, and a photodetector disposed in the second region of the flexible substrate, wherein the organic light-emitting diode and the photodetector are disposed on the same plane.
Abstract:
Embodiments of the inventive concepts provide a method of fabricating a flexible substrate and the flexible substrate fabricated thereby. The method includes printing a gate catalyst pattern on a separation layer, forming a gate plating pattern on the gate catalyst pattern, forming a gate insulating layer on the gate plating pattern, printing a source catalyst pattern and a drain catalyst pattern spaced apart from each other on the gate insulating layer, and forming a source plating pattern and a drain plating pattern on the source catalyst pattern and the drain catalyst pattern, respectively.
Abstract:
Disclosed are an organic light emitting device and a method of fabricating the same. The method of fabricating an organic light emitting device comprises forming a flexible substrate, and forming an organic light emitting layer on the flexible substrate. The forming the flexible substrate comprises, forming a first polymer pattern on a first metal layer, forming a second metal layer on an exposed portion of the first metal layer through the first polymer pattern, forming a gas barrier layer on the first polymer pattern and the second metal layer, forming a second polymer layer on the gas barrier layer, and removing the first metal layer to expose a surface of the first polymer pattern and a surface of the second metal layer.
Abstract:
Provided are a method for manufacturing an integrated substrate for an organic light emitting diode, an organic light emitting diode, and a method for manufacturing an organic light emitting diode, wherein the method for manufacturing an organic light emitting diode may include forming a sacrificial layer on a release substrate, forming a first electrode on the sacrificial layer, forming on the first electrode an auxiliary electrode pattern having an opening, forming a buffer layer on the auxiliary electrode pattern and in the opening, providing a substrate on the buffer layer, removing the release substrate and the sacrificial layer to expose a first surface of the first electrode, and laminating an organic light emitting layer and a second electrode on the first surface of the first electrode.
Abstract:
Provided is an apparatus for manufacturing a flexible integrated substrate. The apparatus for manufacturing the flexible integrated substrate includes a substrate transfer unit configured to transfer a substrate which a functional film is disposed on one surface thereof, a unwinding unit configured to unwind a flexible support film wound in a roll shape, a winding unit configured to wind the support film provided from the unwinding unit in the roll shape, and a pressing unit configured to press the support film being transferred from the unwinding unit to the winding unit to the substrate being transferred to attach the functional film to the support film.
Abstract:
Provided are a random wrinkle structure-formable compound, a composition including the same, a film including a random wrinkle structure, a method of forming the film, and an organic light emitting device including the film. A compound according to the present invention is coated and then, a film having a surface structure of random wrinkles may be simply formed through simple ultraviolet (UV) curing or thermosetting. When the film thus formed is used in an organic light emitting device, light generated from the organic light emitting device is scattered on surfaces of the random wrinkles to prevent light guide or total reflection, and thus, light is extracted to the outside. That is, a random structure disposed at the outside of the device performs a light extraction function and consequently, light efficiency of the organic light emitting device may be increased.
Abstract:
Provided is an organic light emitting diode including a substrate, a light scattering structure including nano-structures on the substrate, a thin film on the nano-structures, and an air gap between the nano-structures, a planarizing layer covering the thin film and thicker than the thin film, a first electrode on the planarizing layer, an organic emission layer on the first electrode, and a second electrode on the organic emission layer.
Abstract:
Provided is a display device and a method of manufacturing the same. The display device includes a thin film transistor, a first electrode electrically connected to the thin film transistor, a self-light emitting pixel layer disposed on the first electrode, a second electrode disposed on the self-light emitting pixel layer, a substrate in which an auxiliary wire is buried, the substrate being disposed on the second electrode, and a reflective pixel layer disposed on the substrate.