Abstract:
Disclosed are new polymeric materials that respond to a mechanical force. The novel polymeric compounds contain an isomer of aziridine, a three-membered N-heterocyclic compound. Also disclosed are methods for preparing the polymeric compounds. Mechanical force-induced cycloaddition of aziridines as mechanophores yields stereospecific products without covalent bond cleavage of aziridines. That is, a mechanical force makes the mechanochemical products stereospecific. The stereospecific products prepared from the isomeric mechanophores by a mechanical force can be widely used in various industrial fields, including new materials.
Abstract:
An unsaturated deoxybenzoin compound has the structure (I) wherein R1, R2, R3, R4, R5, R6, R7, R8, and n are defined herein. A polymer including at least one group derived from a deoxybenzoin compound having structure (I), (II), or a combination thereof is also described, wherein R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, and n are defined herein.
Abstract:
This invention relates to a reaction product obtained by contacting a polymer comprising units derived from dicyclopentadiene with a vinyl terminated macromonomer, a vinyl monomer or a vinylene monomer, in the presence of a metathesis catalyst, where the vinyl monomer or vinylene monomer is represented by the formula: wherein each X is, independently, —CO2R, —CONR1R2, CN, a C1 to a C20 alkyl group; R is a C1 to a C20 alkyl group or an aromatic group; each R1 and R2 is, independently, a hydrogen, a C1 to a C20 alkyl group, or an aromatic group; each R5 is, independently, a hydrogen atom or a C1 to a C40 alkyl group; each Ar is, independently, an aromatic group; and each n is, independently, from 0 to about 40.
Abstract:
A method for preparing a functionalized polymer, the method comprising the steps of: (i) polymerizing monomer with a coordination catalyst to form a reactive polymer; and (ii) reacting the reactive polymer with a nitroso compound.
Abstract:
The present invention provides improved methods for the chemical synthesis of methylene malonates using the Knovenagel synthesis reaction. The method of the invention provides for improved methylene malonates by significantly reducing or eliminating the formation of alternative and/or deleterious side products, significantly reducing or eliminating unwanted consumption of methylene malonates, and significantly reducing or eliminating the degradation of methylene malonates. These advantages result in methylene malonates, which upon recovery, are of higher quality, greater purity, improved yield and possess overall improved performance characteristics (e.g., improved cure speed, retention of cure speed, improved shelf-life and/or stability).
Abstract:
The claimed invention provides a novel compound not having been studied before, that is, a diene carboxylate anion that contains a specific structure, and a salt thereof. The claimed invention further provides a diene carboxylate anion and a salt thereof, especially a metal salt thereof, which are easily soluble in general organic solvents, reactive diluents, and resins, may be in a liquid state at normal temperature depending on the structure, and have high polymerizability. Polymerization/curing of these produces a resin to which many ionic bonds and a metal are introduced, providing various properties such as hardness, scratch resistance, anti-fingerprint property, gas-barrier property, water vapor barrier property, oxygen absorption property, ultraviolet protection, infrared protection, color development and coloring, high refractive index, adhesion, various catalytic abilities, fluorescence ability and light-emitting ability, optical amplification, dispersibility, and antistatic properties. In addition, the anion and the salt can be used for raw materials for functional fine particles and for metal nanoparticle composites, and also for MOD materials. The claimed invention also provides an advantageous method for producing the diene carboxylate anion and the salt thereof.
Abstract:
A polymer containing units represented by the defined formula (1); and a process for producing the polymer, which comprises the step of polymerizing a compound represented by the defined formula (3), the units represented by the formula (1) being polymerized units of the compound represented by the formula (3) such as 9,9-diallylfluorene.
Abstract:
Dialkyl 1-acryloyloxy-2-alkenyl-1-phosphonates and dialkyl 1methacryloyloxy-2-alkenyl-1-phosphonates are prepared by reacting a dialkyl 1-hydroxy-2-alkenyl-1-phosphonate with acryloyl- or methacryloyl chloride in the presence of a base, using preferably an inert organic solvent. The dialkyl 1-acryloyloxy-2-alkenyl-1phosphonates and the dialkyl 1-methacryloyloxy-2-alkenyl-1phosphonates produced are novel compounds. They are useful as flame retardant and cross-linking comonomers in the preparation of self-extinguishing and/or flame retardant polymers. They also can be homopolymerized to give novel phosphorus containing, selfextinguishing polymers.
Abstract:
A curable composition, a cured layer manufactured using the curable composition, a color filter including the cured layer, and a display device including the color filter, the curable composition including a quantum dot surface-modified with a first ligand and a second ligand having a structure different than the first ligand; and a polymerizable compound is provided. The first ligand is a silsesquioxane-based thiol ligand.