Abstract:
A target is provided having a retroreflector. A body is provided having a spherical exterior portion, the body containing a cavity. The cavity is sized to hold the retroreflector, the cavity open to the exterior of the body and having at least one surface opposite the opening, the retroreflector at least partially disposed in the cavity, wherein the retroreflector and at least one surface define a space therebetween. A transmitter is configured to emit an electromagnetic signal. A first actuator is configured to initiate emission of the electromagnetic signal, wherein the transmitter and the first actuator are affixed to the body.
Abstract:
A method of finding a home reference distance of a 3D coordinate measurement device in which a mathematical adjustment is made to move the vertex point to the sphere center of a spherically mounted retroreflector (SMR).
Abstract:
A method uses a two-dimensional (2D) camera in two different positions to provide first and second 2D images having three common cardinal points. It further uses a three-dimensional (3D) measuring device to measure two 3D coordinates. The first and second 2D images and the two 3D coordinates are combined to obtain a scaled 3D image.
Abstract:
A method and system are provided for controlling a laser tracker remotely from the laser tracker through gestures performed by a user. The method includes providing a rule of correspondence between each of a plurality of commands and each of a plurality of user gestures. A gesture is performed by the user with the user's body that corresponds to one of the plurality of user gestures. The gesture performed by the user is detected. The gesture recognition engine determines a first command from one of the plurality of commands that correspond with the detected gesture. Then the first command is executed with the laser tracker.
Abstract:
A 3D coordinate measuring system includes a six-DOF unit having a unit frame of reference and including a structure, a retroreflector, a triangulation scanner, and an augmented reality (AR) color camera. The retroreflector, scanner and AR camera are attached to the structure. The scanner includes a first camera configured to form a first image of the pattern of light projected onto the object by a projector. The first camera and projector configured to cooperate to determine first 3D coordinates of a point on the object in the unit frame of reference, the determination based at least in part on the projected pattern of light and the first image. The system also includes a coordinate measuring device having a device frame of reference and configured to measure a pose of the retroreflector in the device frame of reference, the measured pose including measurements of six degrees-of-freedom of the retroreflector.
Abstract:
A method and apparatus for correcting errors in a bearing cartridge used in a portable articulated arm coordinate measurement machine (AACMM) is provided. The method includes providing a cartridge having a first bearing and a second bearing arranged in a fixed relationship to define an axis, the cartridge further including an angle measurement device configured to measure a rotation of a portion of the cartridge about the axis. A plurality of angles is measured with the angle measurement device. A first plurality of displacements is determined at a first position along the axis, each of the first plurality of displacements being associated with one of the plurality of angles. Compensation values are determined based at least in part on the plurality of angles and the first plurality of displacements.
Abstract:
A coordinate measurement device sends a first beam of light having first and second wavelengths to a target point. The device includes a fiber-optic coupler that combines the first and second wavelengths and launches them through an achromatic optical element to produce collimated and aligned light. The device also includes first and second motors, first and second angle measuring devices, a distance meter, and a processor that determines 3D coordinates of the target point based on the measured distance and two angles.
Abstract:
A laser scanner has a light emitter, a rotary mirror, a light receiver, a first beam splitter to send electromagnetic energy from an electromagnetic energy generator into the environment, a second beam splitter to send reflected electromagnetic energy to a spectroscopic energy detector, and a control and evaluation unit, the spectroscopic energy detector configured to determine wavelengths in the reflected electromagnetic energy.
Abstract:
A laser scanner includes a light emitter that generates a modulated light beam for measuring distance and red, blue, and green lights for capturing colors. The beam is collimated and directed to an object point with a steering mirror. Reflected light from the object point is directed by the steering mirror onto scanner optics. The reflected light is directed to an optical receiver that sends the first light in a first path and the second, third and fourth lights in a second path to a color receiver. The first light is demodulated to determine distance to the target. The second, third, and fourth lights are separated and measured to determine three color values. The color values are combined with the measured distance value to determine a color 3D coordinate for the object point.
Abstract:
Optically communicating from a user to a laser tracker a command to control tracker operation includes providing a rule of correspondence between each of a plurality of commands and temporal patterns; user selecting a first command; projecting a first light from the tracker to a retroreflector; reflecting a second light from the retroreflector that is part of the first light; obtaining first sensed data by sensing a third light imaged onto a photosensitive array that is part of the second light; user creating, between first and second times, a first temporal pattern including at least a decrease in the third light's optical power followed by an increase in its optical power, the first temporal pattern corresponding to the first command; determining the first command based at least in part on processing the first sensed data according to the rule of correspondence; and executing the first command with the tracker.