Abstract:
A method, operable at a network node of a wireless network, schedules radio resource usage for a mobile device to transmit on a device-to-device connection. The method includes receiving, from the mobile device, an indication of a requirement for transmission resources, comprising at least an indication that the resources are required with a periodicity, transmitting, to the mobile device, an assignment of a first scheduling configuration for the device-to-device connection, comprising at least an indication of periodically recurring radio resources to be used for a plurality of instances of a message transmission on the device-to-device connection, transmitting, to the mobile device, an indication to begin use of the periodically recurring radio resources, and handing over responsibility for providing radio resources for the device-to-device connection from the network node to a target network node such that the availability of radio resources with the periodicity is substantially maintained.
Abstract:
A transmit power control rule for device-to-device (D2D) transmissions may not be necessary during periods in which no uplink transmissions are scheduled to be received by an enhanced Node B base station (eNB). When uplink transmissions are not scheduled to be received by the eNB, the eNB may send a transmit power control (TPC) command to a D2D capable user equipment (D2D UE) that instructs the D2D UE to perform a D2D transmission at a pre-defined transmit power level (e.g., maximum transmit power level). When uplink transmissions are scheduled to be received the eNB, the eNB may send a TPC command to the D2D UE that instructs the D2D UE to perform a D2D transmission at a transmit power level defined by a power control rule.
Abstract:
An eNB is configured to perform different methods for assigning discovery resources. One method includes receiving a request for discovery resources from an announcing user equipment (UE); allocating a plurality of discovery resources in response to the request; and transmitting a message indicating the plurality of discovery resources, the transmitted message configured to be used by a monitoring UE to determine which discovery resources to monitor. In some embodiments, this may include updating a message to indicate which discovery resources have been allocated, and broadcasting the updated message to a plurality of UEs including the monitoring UE.
Abstract:
A bearer path can be optimized following a mobile relay node (MRN) handover in order to directly re-route the bearer path from a user equipment (UE) core network to a target donor base station (DeNB). Bearer path optimization signaling includes a packet data network gateway (PGW) relocation information element (IE) indicating that a PGW of an MRN is being relocated from an initial DeNB to a target DeNB. The PGW relocation IE may be carried in a path switch request message. Bearer path optimization signaling also includes an non-access stratum (NAS) activate default enhanced packet switch (EPS) bearer context request/accept messages for activating the optimized bearer path. The NAS activate default EPS bearer request/accept messages may be communicated between the mobile relay node mobility management entity (MME) and the MRN via the target DeNB.
Abstract:
Embodiments are provided for a mechanism for supporting multiple 3GPP Packet Data Network (PDN) connections over a WLAN. Multiple gateway interfaces, each corresponding to a different PDN, are established over a single connection, via the WLAN, between a UE and an access gateway. A PDN access configuration protocol (PACP) is provided to configure the association between the IP interface on the access gateway and the corresponding 3GPP PDN/APN connection, and exchange the PDN setup between the UE and the access gateway. The PACP mechanisms allow signaling APN information and associating corresponding IP context at the access gateway, setting up and tearing down connection context between the UE and PDN gateway (P-GW), and supporting session continuity when the UE moves to another access gateway. The mechanisms support using Dynamic Host Configuration Protocol (DHCP) for IPv4 and Neighbor Discovery for IPv6.
Abstract:
Embodiments are provided to support device-to-device (D2D) communications in a time-division duplexing (TDD) communications system, and ensure that D2D discovery signals are transmitted by user devices on an uplink subframe when there is a TDD frame configuration change. In an embodiment, a user device receives form the network a TDD frame configuration selected from a set of available TDD frame configurations according to the TDD configuration. The device further receives a D2D discovery configuration for a discovery time interval. The user device then allocates a transmission resource a D2D discovery signal within the discovery time interval according to the D2D discovery configuration. The user device is also configured to receive from another device a second D2D discovery signal during the discovery time interval in accordance with the TDD configuration and the D2D discovery configuration.
Abstract:
Embodiments are provided for supporting multiple Radio Access Technologies (RATs) using a common backhaul transport network. A relay node is configured to instantiate a virtual-user equipment (V-UE) layer for a UE, upon determining that the UE uses a different RAT than the backhaul transport network. A connection is then established between the V-UE layer and a V-UE gateway using a pre-existing radio interface between the relay node and a base station. Upon receiving data from the UE, the relay node translates the data into a RAT format supported by the backhaul transport network, and sends the data on the connection via the base station, wherein the RAT format of the UE is transparent to the base station. A generic access network controller is also configured to connect and exchange signaling with the relay node to establish a service for the UE and configure radio resource on the relay node.
Abstract:
A transmit power control rule for device-to-device (D2D) transmissions may not be necessary during periods in which no uplink transmissions are scheduled to be received by an enhanced Node B base station (eNB). When uplink transmissions are not scheduled to be received by the eNB, the eNB may send a transmit power control (TPC) command to a D2D capable user equipment (D2D UE) that instructs the D2D UE to perform a D2D transmission at a pre-defined transmit power level (e.g., maximum transmit power level). When uplink transmissions are scheduled to be received the eNB, the eNB may send a TPC command to the D2D UE that instructs the D2D UE to perform a D2D transmission at a transmit power level defined by a power control rule.
Abstract:
Embodiments are provided to support device-to-device (D2D) communications in a time-division duplexing (TDD) communications system, and ensure that D2D discovery signals are transmitted by user devices on an uplink subframe when there is a TDD frame configuration change. In an embodiment, a user device receives form the network a TDD frame configuration selected from a set of available TDD frame configurations according to the TDD configuration. The device further receives a D2D discovery configuration for a discovery time interval. The user device then allocates a transmission resource a D2D discovery signal within the discovery time interval according to the D2D discovery configuration. The user device is also configured to receive from another device a second D2D discovery signal during the discovery time interval in accordance with the TDD configuration and the D2D discovery configuration.
Abstract:
Various disclosed embodiments include methods and apparatus for inter-cell coordination for a device-to-device communication resource allocation. A method includes allocating, at a first base station, a device-to-device (D2D) communication resource from a pool of communication resources to a first electronic device controlled by the first base station, wherein the first electronic device is within a D2D communication group. The method also includes, in response to a second electronic device within the D2D communication group being controlled by a second base station, transmitting, by the first base station, information corresponding to the D2D communication resource allocation to the second base station.