Abstract:
An electrochemical cell includes a bifunctional air cathode, an anode, and a ceramic electrolyte separator disposed substantially between the bifunctional air cathode and the anode. The anode includes a solid metal and an electrolyte configured to transition to a liquid phase in an operating temperature range. The electrolyte includes at least one of an alkali oxide, boron oxide, a carbonate, a phosphate, and a group III-X transition metal oxide.
Abstract:
Articles having coatings that are resistant to high temperature degradation are described, along with methods for making such articles. The article comprises a coating disposed on a substrate. The coating comprises a plurality of elongated surface-connected voids. The article further includes a protective agent disposed within at least some of the voids of the coating; the protective agent comprises a substance capable of chemically reacting with liquid nominal CMAS to form a solid crystalline product outside the crystallization field of said nominal CMAS. This solid crystalline product has a melting temperature greater than about 1200 degrees Celsius. The method generally includes disposing the protective agent noted above within the surface connected voids of the coating at an effective concentration to substantially prevent incursion of CMAS materials into the voids in which the protective agent is disposed.
Abstract:
An article including a substrate and a plurality of coatings disposed on the substrate is presented. The plurality of coatings includes a thermal barrier coating disposed on the substrate; and a protective coating including a calcium-magnesium-aluminum-silicon-oxide (CMAS)-reactive material disposed on the thermal barrier coating. The CMAS-reactive material has an orthorhombic weberite crystal structure. The CMAS-reactive material is present in the plurality of coatings in an effective amount to react with a CMAS composition at an operating temperature of the thermal barrier coating, thereby forming a reaction product having one or both of melting temperature and viscosity greater than that of the CMAS composition. A method of making the article and a related turbine engine component are also presented.
Abstract:
Phosphor particles, methods for their use to produce fluorescent lamps, and fluorescent lamps that make use of such particles. Such a phosphor particle has a core surrounded by a shell, and the shell contains GdMgB5O10 doped (activated) with at least terbium ions as a rare earth-containing phosphor composition that absorbs ultraviolet photons to emit green-spectrum light. The core is formed of a mineral material that is chemically compatible with the rare earth-containing phosphor composition of the shell, but does not contain intentional additions of terbium.