Abstract:
Embodiments of emission reduction system including various embodiments of an emission filters for a power plant including a gas turbine are disclosed. The system includes: an emission filter; and a retraction system operably coupled to an exhaust passage of the gas turbine. The exhaust passage defines an exhaust path of exhaust from the gas turbine. The retraction system selectively moves the emission filter between a first location within the exhaust path and a second location out of the exhaust path. In a combined cycle power plant, the first location is upstream of a heat recovery steam generator (HRSG). The systems and filters described allow for temporary positioning of emission filter(s) just downstream of a gas turbine exhaust outlet, or upstream of an HRSG, where provided, for emission reduction at low loads or startup conditions, and removal of the emission filter(s) once operations move to higher loads.
Abstract:
An airflow control system control system for a gas turbine system according to an embodiment includes: an airflow generation system including a plurality of air moving systems for selective attachment to a rotatable shaft of a gas turbine system, the airflow generation system drawing in an excess flow of air through an air intake section; and a mixing area for receiving an exhaust gas stream of the gas turbine system; the airflow generation system: directing a first portion and a second portion of the excess flow of air generated by the airflow generation system into the mixing area to reduce a temperature of the exhaust gas stream; and directing a third portion of the excess flow of air generated by the airflow generation system into a discharge chamber of a compressor component of the gas turbine system.
Abstract:
A system includes a catalyst system having at least one catalyst to treat an exhaust gas from a gas turbine system, and a thermal storage system having at least one storage tank to store thermal energy in a medium, wherein the system is configured to transfer heat from the medium to the at least one catalyst.
Abstract:
An exhaust processing system for treating an exhaust gas stream that includes an exhaust duct for directing the exhaust gas stream; a first catalyst positioned within the exhaust duct for receiving the exhaust gas stream flowing therethrough; and an injection system for injecting cooling air and reductant in the exhaust gas stream. The injection system may include: a reductant supply feed for supplying the reductant; a cooling air supply feed for supplying the cooling air; a junction configured at which the reductant supply feed and the cooling air supply feed combine to form a combined supply feed thereafter; and an injector disposed within the exhaust duct to which the combined supply feed connects.
Abstract:
A system includes a catalyst system having at least one catalyst to treat an exhaust gas from a gas turbine system, and a thermal storage system having at least one storage tank to store thermal energy in a medium, wherein the system is configured to transfer heat from the medium to the at least one catalyst.
Abstract:
An emissions control system for a gas turbine system includes a reducing agent supply, at least one sensor, at least one valve, and a controller. The reducing agent supply has one or more conduits configured to couple to one or more fluid pathways of the gas turbine system, which are fluidly coupled to a flow path of an exhaust gas from a combustor through a turbine of the gas turbine system. The at least one sensor is configured to obtain a feedback of one or more parameters of the gas turbine system, which are indicative of a visibility of emissions of the exhaust gas. The at least one valve is coupled to the reducing agent supply. The controller is communicatively coupled to the at least one sensor and the at least one valve, such that, in response to the feedback, the controller adjusts the at least one valve to adjust a flow of the reducing agent to reduce the visibility of the emissions of the exhaust gas.
Abstract:
Embodiments of emission reduction system including various embodiments of an emission filters for a power plant including a gas turbine are disclosed. The system includes: an emission filter; and a retraction system operably coupled to an exhaust passage of the gas turbine. The exhaust passage defines an exhaust path of exhaust from the gas turbine. The retraction system selectively moves the emission filter between a first location within the exhaust path and a second location out of the exhaust path. In a combined cycle power plant, the first location is upstream of a heat recovery steam generator (HRSG). The systems and filters described allow for temporary positioning of emission filter(s) just downstream of a gas turbine exhaust outlet, or upstream of an HRSG, where provided, for emission reduction at low loads or startup conditions, and removal of the emission filter(s) once operations move to higher loads.
Abstract:
A system includes a system includes an exhaust section which receives an exhaust flow of a gas turbine, where the exhaust section includes a catalyst assembly. The system includes an exhaust duct coupled to the diffuser section upstream of the catalyst assembly, where the exhaust duct extracts a return portion of the exhaust flow. The system includes a filter house coupled to the exhaust duct, where the filter house is receives a combined flow of an ambient air flow and the return portion. The system includes a return conduit coupled to the filter house and the exhaust section, where the return conduit is coupled to the exhaust section upstream of the exhaust duct. The return conduit directs the combined flow to the exhaust section, and the catalyst assembly receives a mixed flow including the exhaust flow and the combined flow.
Abstract:
Embodiments of emission reduction system including various embodiments of an emission filters for a power plant including a gas turbine are disclosed. The system includes: an emission filter; and a retraction system operably coupled to an exhaust passage of the gas turbine. The exhaust passage defines an exhaust path of exhaust from the gas turbine. The retraction system selectively moves the emission filter between a first location within the exhaust path and a second location out of the exhaust path. In a combined cycle power plant, the first location is upstream of a heat recovery steam generator (HRSG). The systems and filters described allow for temporary positioning of emission filter(s) just downstream of a gas turbine exhaust outlet, or upstream of an HRSG, where provided, for emission reduction at low loads or startup conditions, and removal of the emission filter(s) once operations move to higher loads.
Abstract:
Embodiments of emission reduction system including various embodiments of an emission filters for a power plant including a gas turbine are disclosed. The system includes: an emission filter; and a retraction system operably coupled to an exhaust passage of the gas turbine. The exhaust passage defines an exhaust path of exhaust from the gas turbine. The retraction system selectively moves the emission filter between a first location within the exhaust path and a second location out of the exhaust path. In a combined cycle power plant, the first location is upstream of a heat recovery steam generator (HRSG). The systems and filters described allow for temporary positioning of emission filter(s) just downstream of a gas turbine exhaust outlet, or upstream of an HRSG, where provided, for emission reduction at low loads or startup conditions, and removal of the emission filter(s) once operations move to higher loads.