Abstract:
A charge balanced (CB) trench-metal-oxide-semiconductor field-effect transistor (MOSFET) device may include a charge balanced (CB) layer defined within a first epitaxial (epi) layer that has a first conductivity type. The CB layer may include charge balanced (CB) regions that has a second conductivity type. The CB trench-MOSFET device may include a device layer defined in a second epi layer and having the first conductivity type, where the device layer is disposed on the CB layer. The device layer may include a source region, a base region, a trench feature, and a shield region having the second conductivity type disposed at a bottom surface of the trench feature. The device layer may also include a charge balanced (CB) bus region having the second conductivity type that extends between and electrically couples the CB regions of the CB layer to at least one region of the device layer having the second conductivity type.
Abstract:
Aspects of the present disclosure are directed toward designs and methods of manufacturing semiconductor devices, such as semiconductor charge balanced (CB) devices or semiconductor super-junction (SJ) devices. The disclosed designs and methods are useful in the manufacture of CB devices, such as planar CB metal-oxide semiconductor field-effect transistor (MOSFET) devices, as well as other devices.
Abstract:
A method of manufacturing a semiconductor device including performing a first implantation in a semiconductor layer via ion implantation forming a first implantation region and performing a second implantation in the semiconductor layer via ion implantation forming a second implantation region. The first and second implantation overlap with one another and combine to form a connection region extending into the semiconductor layer by a predefined depth.
Abstract:
A super junction (SJ) device may include one or more charge balance (CB) layers. Each CB layer may include an epitaxial (epi) layer having a first conductivity type and a plurality of charge balance (CB) regions having a second conductivity type. Additionally, the SJ device may include a connection region having the second conductivity type that extends from a region disposed in a top surface of a device layer of the SJ device to one or more of the CB regions. The connection region may enable carriers to flow directly from the region to the one or more CB regions, which may decrease switching losses of the SJ device.
Abstract:
A silicon carbide device is presented that includes a gate electrode disposed over a portion of a silicon carbide substrate as well as a dielectric film disposed over the gate electrode. The device has a contact region disposed near the gate electrode and has a layer disposed over the dielectric film and over the contact region. The layer includes nickel in portions disposed over the dielectric film and includes nickel silicide in portions disposed over the contact region. The nickel silicide layer is configured to provide an ohmic contact to the contact region of the silicon carbide device.
Abstract:
The subject matter disclosed herein relates to silicon carbide (SiC) power devices and, more specifically, to active area designs for SiC super-junction (SJ) power devices. A SiC-SJ device includes an active area having one or more charge balance (CB) layers. Each CB layer includes a semiconductor layer having a first conductivity-type and a plurality of floating regions having a second conductivity-type disposed in a surface of the semiconductor layer. The plurality of floating regions and the semiconductor layer are both configured to substantially deplete to provide substantially equal amounts of charge from ionized dopants when a reverse bias is applied to the SiC-SJ device.
Abstract:
A charge balanced (CB) trench-metal-oxide-semiconductor field-effect transistor (MOSFET) device may include a charge balanced (CB) layer defined within a first epitaxial (epi) layer that has a first conductivity type. The CB layer may include charge balanced (CB) regions that has a second conductivity type. The CB trench-MOSFET device may include a device layer defined in a second epi layer and having the first conductivity type, where the device layer is disposed on the CB layer. The device layer may include a source region, a base region, a trench feature, and a shield region having the second conductivity type disposed at a bottom surface of the trench feature. The device layer may also include a charge balanced (CB) bus region having the second conductivity type that extends between and electrically couples the CB regions of the CB layer to at least one region of the device layer having the second conductivity type.
Abstract:
A disclosed super-junction (SJ) device includes a first epitaxial (epi) layer that forms a first SJ layer of the SJ device, and includes a second epi layer disposed on the first SJ layer that forms a device layer of the SJ device. An active area of the first and second epi layers includes a first set of SJ pillars comprising a particular doping concentration of a first conductivity type and a second set of SJ pillars comprising the particular doping concentration of a second conductivity type. A termination area of the first and second epi layers has a minimized epi doping concentration of the first conductivity type that is less than the particular doping concentration, and the termination area of the second epi layer includes a plurality of floating regions of the second conductivity type that form a junction termination of the SJ device.
Abstract:
An electrical component and method for manufacturing the electrical component with a substrate a conductor stack having multiple layers and including at least one electrically conductive path. The conductor stack mounted to the substrate with a dielectric passivation stack encasing at least a portion of the conductor stack.
Abstract:
A charge balanced (CB) trench-metal-oxide-semiconductor field-effect transistor (MOSFET) device may include a charge balanced (CB) layer defined within a first epitaxial (epi) layer that has a first conductivity type. The CB layer may include charge balanced (CB) regions that has a second conductivity type. The CB trench-MOSFET device may include a device layer defined in a second epi layer and having the first conductivity type, where the device layer is disposed on the CB layer. The device layer may include a source region, a base region, a trench feature, and a shield region having the second conductivity type disposed at a bottom surface of the trench feature. The device layer may also include a charge balanced (CB) bus region having the second conductivity type that extends between and electrically couples the CB regions of the CB layer to at least one region of the device layer having the second conductivity type.