Abstract:
A trainable transceiver is provided for a vehicle for transmitting signals to a device remote from the vehicle. The trainable transceiver includes an RF transceiver configured to receive an RF signal during a training mode in order to learn characteristics of the received RF signal, and to transmit an RF signal to the remote device in an operating mode where the transmitted RF signal includes the learned characteristics of the received RF signal; a local memory device for storing channel data representing the learned characteristics of the received RF signal; an interface configured to communicate with an Internet-connected device; and a controller coupled to the local memory device and the interface, the controller configured to retrieve the channel data from the local memory device and transfer the channel data for storage remote from the vehicle using the interface. The controller may also receive channel data from the remote memory device.
Abstract:
A system for controlling a remote device includes a first trainable transceiver, a second trainable transceiver, and a cloud computing system configured to be in communication with the first trainable transceiver and the second trainable transceiver. The cloud computing system stores a code roll, and the cloud computing system transmits a current value of the code roll to the first trainable transceiver or the second trainable transceiver upon receiving a request transmission from the first trainable transceiver or the second trainable transceiver respectively.
Abstract:
A system for installation in a vehicle and for controlling a remote device includes a trainable transceiver and a remote button module. The trainable transceiver base station configured to be mounted in the vehicle at a first location and the remote button module separated from the base station and configured to be mounted in the vehicle at a second location. The remote button module is configured to wirelessly transmit a command signal to the base station in response to receiving a user input at a user input device, and the base station responds to receiving the command signal by transmitting an activation signal to the remote device, wherein the activation signal is formatted to control the remote device.
Abstract:
A trainable transceiver for installation in a vehicle and for controlling a remote device includes a transceiver circuit configured, based on training information, to control the remote device, a communications device configured to communicate with a mobile communications device, an output device, and a control circuit coupled to the transceiver circuit, coupled to the communications device, and coupled to the output device. The control circuit is configured to receive notification information from the mobile communications device via the communications device, and wherein the control circuit is configured to generate an output using the output device based on the notification information.
Abstract:
A system for installation in a vehicle and for controlling a remote device including a trainable transceiver, a camera, an output device, and a control circuit coupled to the trainable transceiver and the camera. The control circuit is configured to use data received from the camera to determine if the vehicle is well positioned within a garage, and the control circuit is configured to provide an indication that the vehicle is well positioned using the output device in response to determining that the vehicle is well positioned within a garage.
Abstract:
A system for controlling a remote device including a trainable transceiver, communications electronics, and a processing circuit coupled to the trainable transceiver and the communications electronics. The processing circuit is configured to cause the trainable transceiver to control a remote device in response to a signal received from a cloud computing system, wherein the signal is received from the cloud computing system using the communications electronics.
Abstract:
A system for controlling a remote device includes a first trainable transceiver, a second trainable transceiver, and a cloud computing system configured to be in communication with the first trainable transceiver and the second trainable transceiver. The cloud computing system stores a code roll, and the cloud computing system transmits a current value of the code roll to the first trainable transceiver or the second trainable transceiver upon receiving a request transmission from the first trainable transceiver or the second trainable transceiver respectively.
Abstract:
A storage system for a plane fuselage including at least one storage unit defining an enclosed cargo storage space. At least one monitoring module is disposed proximate the at least one storage unit. The at least one monitoring module is configured to detect a condition within or proximate the at least one storage unit that includes at least one of a temperature, a fire condition, a water leakage, a gas leakage, a chemical leakage, an explosive condition, or a movement of the at least one storage unit. At least one status communication device is in communication with the at least one monitoring module and is configured to alert a user of the detected condition by the at least one monitoring module.
Abstract:
A vehicle occupant aid system is disclosed. The system may comprise a rearview assembly. Further, the rearview assembly may comprise a button. The system may further comprise one or more data capturing element. Each element may be a microphone, an imager, a location device, and/or a sensor. In some embodiments, a controller may record the data for a predetermined period of time. Further, the controller may transmit information to a remote device based upon initiation of a trigger. The information being based, at least in part, on the data. In other embodiments, the controller may operability record the data in response to a first operation of the button. Further, the controller may transmit information to a remote device based upon a second operation of the button. The information being based, at least in part, on the data recorded between the first and second operations of the button.
Abstract:
A trainable transceiver may comprise an electro-optic element comprising a first substrate having an electrode coating on a surface; a second substrate generally parallel to and in a spaced-apart relationship with the first substrate and having an electrode coating on a surface; and a window in at least one of the first substrate and the second substrate from which the electrode coating has been at least partially removed. The trainable transceiver may also comprise a machine-readable optical image selectively visible through the window; a light source disposed in proximity to the machine-readable optical image; and a controller capable of controlling the light source. Upon receipt of an appropriate input, the controller causes the activation of the light source which, in turn, causes the machine-readable optical image to be visible through the electro-optic element.