Abstract:
A fin cut last methodology for manufacturing a vertical FinFET includes forming a plurality of semiconductor fins over a substrate, forming shallow trench isolation between active fins and, following the formation of a functional gate of the active fins, using a selective etch to remove a sacrificial fin from within an isolation region. A further etching step can be used to remove a portion of the gate stack proximate to the sacrificial fin to create an isolation trench and a laterally-extending cavity within the isolation region that are back-filled with an isolation dielectric.
Abstract:
A semiconductor structure includes a strain-relaxed semiconductor substrate, fins on the strain-relaxed semiconductor substrate, the fins each having a bottom inactive region and an exposed top active region. The semiconductor structure further includes a liner layer along sidewalls of the bottom inactive region and adjacent surface areas of the strain-relaxed semiconductor substrate, a densified local fill layer surrounding the bottom inactive regions of the plurality of fins, a densified global fill layer adjacent outer sidewalls of the densified local fill layer, and a hard mask layer separating the densified global fill layer from the substrate and the densified local fill layer, a lack of voids in the densified local fill layer resulting in the bottom inactive regions of the fins being substantially free of oxidation defects. A method to realize the structure is also disclosed, the method preventing oxidation defects in strain-relaxed fins by reducing local gap fill voids.
Abstract:
A method includes providing a substrate having a first and a second plurality of fins with a first at least one dielectric material disposed thereon, removing upper portions of the first dielectric material to expose upper portions of the first and the second plurality of fins, removing the first dielectric material from the lower portions of the second plurality of fins to expose lower portions of the second plurality of fins, depositing a second at least one dielectric material on at least the upper and the lower exposed portions of the second plurality of fins and on the upper exposed portions of first plurality of fins, removing the second dielectric material to expose upper portions of the first and the second plurality of fins, and wherein the first dielectric material is different from the second dielectric material. The resulting structure may be operable for use as nFETs and pFETs.
Abstract:
Semiconductor device structures having fin structure(s) and fabrication methods thereof are presented. The methods include: providing a first mask above a substrate structure and a second mask above the first mask and the substrate structure; removing portions of the first mask not underlying the second mask and selectively etching the substrate structure using the second mask to form at least one cavity therein; providing a third mask over portions of the substrate structure not underlying the second mask and removing the second mask; and selectively etching the substrate structure using remaining portions of the first mask and the third mask to the form fin structure(s) of the semiconductor device structure, where the fin structure(s) is self-aligned with the at least one cavity in the substrate structure. For example, the semiconductor device structure can be a fin-type transistor structure, and the method can include forming a source/drain region within a cavity.
Abstract:
Methods of fabricating one or more semiconductor fin structures are provided which include: providing a substrate structure including a first semiconductor material; providing a fin stack(s) above the substrate structure, the fin stack(s) including at least one semiconductor layer, which includes a second semiconductor material; depositing a conformal protective film over the fin stack(s) and the substrate structure; and etching the substrate structure using, at least in part, the fin stack(s) as a mask to facilitate defining the one or more semiconductor fin structures. The conformal protective film protects sidewalls of the at least one semiconductor layer of the fin stack(s) from etching during etching of the substrate structure. As one example, the first semiconductor material may be or include silicon, the second semiconductor material may be or include silicon germanium, and the conformal protective film may be, in one example, silicon nitride.