Abstract:
Methods to form multi Vt channels, including a single type of WF material, utilizing lower annealing temperatures and the resulting devices are disclosed. Embodiments include providing an interfacial-layer on a semiconductor substrate; forming a first high-k dielectric-layer on the interfacial-layer; forming a second high-k dielectric-layer and a first cap-layer, respectively, on the first high-k dielectric-layer; removing the second high-k dielectric and first cap layers in first and second regions; forming a second cap-layer on the first high-k dielectric-layer in the first and second regions and on the first cap-layer in a third region; performing an annealing process; removing the second cap-layer from all regions and the first cap-layer from the third region; forming a third high-k dielectric-layer over all regions; forming a work-function composition-layer and a barrier-layer on the third high-k dielectric-layer in all regions; removing the barrier-layer from the first region; and forming a gate electrode over all regions.
Abstract:
The present application relates to an optical planarizing layer etch process. Embodiments include forming fins separated by a dielectric layer; forming a recess in the dielectric layer on each side of each fin, each recess being for a metal gate; forming sidewall spacers on each side of each recess; depositing a high-k dielectric liner in each recess and on a top surface of each of the fins; depositing a metal liner over the high-k dielectric layer; depositing a non-conformal organic layer (NCOL) over a top surface of the dielectric layer to pinch-off a top of each recess; depositing an OPL and ARC over the NCOL; etching the OPL, ARC and NCOL over a portion of the dielectric layer and recesses in a first region; and etching the portion of the recesses to remove residual NCOL present at a bottom of each recess of the portion of the recesses.
Abstract:
Co-fabricating non-planar (i.e., three-dimensional) semiconductor devices with different threshold voltages includes providing a starting semiconductor structure, the structure including a semiconductor substrate, multiple raised semiconductor structures coupled to the substrate, at least two gate structures encompassing a portion of the raised structures, each gate structure including a gate opening lined with dielectric material and partially filled with work function material, a portion of the work function material being recessed. The co-fabrication further includes creating at least one conformal barrier layer in one or more and less than all of the gate openings, filling the gate openings with conductive material, and modifying the work function of at least one and less than all of the filled gate structures.
Abstract:
A method for forming FinFETs having a capping layer for reducing punch through leakage includes providing an intermediate semiconductor structure having a semiconductor substrate and a fin disposed on the semiconductor substrate. A capping layer is disposed over the fin, and an isolation fill is disposed over the capping layer. A portion of the isolation fill and the capping layer is removed to expose an upper surface portion of the fin. Tapping layer and a lower portion of the fin define an interface dipole layer barrier, a portion of the capping layer operable to provide an increased negative charge or an increased positive charge adjacent to the fin, to reduce punch-through leakage compared to a fin without the capping layer.
Abstract:
A semiconductor structure includes a semiconductor substrate, a semiconductor fin on the semiconductor substrate, a transistor integrated with the semiconductor fin at a top portion thereof, the transistor including an active region including a source, a drain and a channel region therebetween. The semiconductor structure further includes a gate structure over the channel region, the gate structure including a gate electrode, an air-gap spacer pair on opposite sidewalls of the gate electrode, and a gate contact for the gate electrode. A method of fabricating such a semiconductor device is also provided.
Abstract:
A method includes providing a starting structure, the starting structure including a semiconductor substrate, sources and drains, a hard mask liner layer over the sources and drains, a bottom dielectric layer over the hard mask liner layer, metal gates between the sources and drains, the metal gates defined by spacers, gate cap openings between corresponding spacers and above the metal gates, and a top dielectric layer above the bottom dielectric layer and in the gate cap openings, resulting in gate caps. The method further includes removing portions of the top dielectric layer, the removing resulting in contact openings and divot(s) at a top portion of the spacers and/or gate caps, and filling the divot(s) with etch-stop material, the etch-stop material having an etch-stop ability better than a material of the spacers and gate cap. A resulting semiconductor structure is also disclosed.
Abstract:
Methods to form multi Vt channels, including a single type of WF material, utilizing lower annealing temperatures and the resulting devices are disclosed. Embodiments include providing an interfacial-layer on a semiconductor substrate; forming a first high-k dielectric-layer on the interfacial-layer; forming a second high-k dielectric-layer and a first cap-layer, respectively, on the first high-k dielectric-layer; removing the second high-k dielectric and first cap layers in first and second regions; forming a second cap-layer on the first high-k dielectric-layer in the first and second regions and on the first cap-layer in a third region; performing an annealing process; removing the second cap-layer from all regions and the first cap-layer from the third region; forming a third high-k dielectric-layer over all regions; forming a work-function composition-layer and a barrier-layer on the third high-k dielectric-layer in all regions; removing the barrier-layer from the first region; and forming a gate electrode over all regions.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to vertical transport field effect transistor devices and methods of manufacture. A structure includes: a vertical fin structure having a lower dopant region, an upper dopant region and a channel region between the lower dopant region and the upper dopant region; and a doped semiconductor material provided on sides of the vertical fin structure at a lower portion. The lower dopant region being composed of the doped semiconductor material which is merged into the vertical fin structure at the lower portion.
Abstract:
A semiconductor structure includes a strain-relaxed semiconductor substrate, fins on the strain-relaxed semiconductor substrate, the fins each having a bottom inactive region and an exposed top active region. The semiconductor structure further includes a liner layer along sidewalls of the bottom inactive region and adjacent surface areas of the strain-relaxed semiconductor substrate, a densified local fill layer surrounding the bottom inactive regions of the plurality of fins, a densified global fill layer adjacent outer sidewalls of the densified local fill layer, and a hard mask layer separating the densified global fill layer from the substrate and the densified local fill layer, a lack of voids in the densified local fill layer resulting in the bottom inactive regions of the fins being substantially free of oxidation defects. A method to realize the structure is also disclosed, the method preventing oxidation defects in strain-relaxed fins by reducing local gap fill voids.
Abstract:
A method includes providing a substrate having a first and a second plurality of fins with a first at least one dielectric material disposed thereon, removing upper portions of the first dielectric material to expose upper portions of the first and the second plurality of fins, removing the first dielectric material from the lower portions of the second plurality of fins to expose lower portions of the second plurality of fins, depositing a second at least one dielectric material on at least the upper and the lower exposed portions of the second plurality of fins and on the upper exposed portions of first plurality of fins, removing the second dielectric material to expose upper portions of the first and the second plurality of fins, and wherein the first dielectric material is different from the second dielectric material. The resulting structure may be operable for use as nFETs and pFETs.