Abstract:
Solvent-free methods of making a component, like an electrode, for an electrochemical cell are provided. A particle mixture is processed in a dry-coating device having a rotatable vessel defining a cavity with a rotor. The rotatable vessel is rotated at a first speed in a first direction and the rotor at a second speed in a second opposite direction. The particle mixture includes first inorganic particles (e.g., electroactive particles), second inorganic particles (e.g., ceramic HF scavenging particles), and third particles (e.g., electrically conductive carbon-containing particles). The dry coating creates coated particles each having a surface coating (including second inorganic particles and third particles) disposed over a core region (the first inorganic particle). The coated particles are mixed with polymeric particles in a planetary and centrifugal mixer that rotates about a first axis and revolves about a second axis. The polymeric particles surround each of the plurality of coated particles.
Abstract:
An electrode including an electrode active material including lithium (Li) and a polymer layer coating at least a portion of the electrode active material is provided. The polymer layer includes a polymerization product of a monomer having Formula I: where R1 and R2 are independently an aryl or a branched or unbranched C1-C10 alkyl and X1 and X2 are independently chlorine (Cl), bromine (Br), or iodine (I).
Abstract:
A method of modifying a carbonate layer formed on a surface of an electrochemical cell component is provided. The surface includes a ceramic oxide. The carbonate layer includes a carbonate and is substantially non-conductive to lithium ions and sodium ions. The method includes contacting the carbonate layer with a modifying agent to form a mixture and causing the modifying agent to incorporate into the carbonate layer and form a modified hybrid layer including a eutectic mixture of the modifying agent and the carbonate. The modified hybrid layer is conductive to lithium ions and sodium ions.
Abstract:
The present disclosure provides methods of compensation for capacity loss resulting from cycle-induced lithium consumption in an electrochemical cell including at least one electrode. Such methods may include adding a lithiation additive to the at least one electrode so as to create a lithium source. The lithium source compensates for cycle-induced lithiation loss such that the electrochemical cell having the lithiation additive experiences total capacity losses of less than or equal to about 5% of an initial capacity prior to cycling of lithium. The lithiation additive includes a lithium silicate represented by the formula LiuHr, where Hr=Liy-uSiOz and where 0≤y≤3.75 and 0≤z≤2 and u is a useable portion of y, 0≤u≤y. The lithium source may include z/4 Li4SiO4 and LimSi, where 0≤m≤4.4.
Abstract:
Catalyst systems that are resistant to high-temperature sintering and methods for preparing such catalyst systems that are resistant to sintering at high temperatures are provided. Methods of forming such catalyst systems include contacting a support having a surface including a catalyst particle with a solution comprising a metal salt and having an acidic pH. The metal salt is precipitated onto the surface of the support. Next, the metal salt is calcined to selectively generate a porous coating of metal oxide on the surface of the support distributed around the catalyst particle.
Abstract:
An electroactive material for use in an electrochemical cell, like a lithium ion battery, is provided. The electroactive material comprises a multifunctional hybrid protective coating system formed over an electroactive material. The coating system includes a first oxide-based coating disposed on one or more surfaces of the electroactive material, followed by a second coating deposited via a non-aqueous process. The second coating may be a fluoride-based, nitride-based, or carbide-based coating. The first and second coatings may be applied by atomic layer deposition (ALD) to form conformal ultrathin layers over the electroactive materials. Such a multifunctional hybrid protective coating system can suppress formation of gases within the electrochemical cell and also minimize formation of solid electrolyte interface (SEI) layers on the electrode to improve battery performance. Methods for making such materials and using such materials in electrochemical cells are likewise provided.
Abstract:
An electrochemical cell includes a first electrode that includes a first current collector and a first electroactive material layer disposed on or near the first current collector, a second electrode that includes a second current collector and a second electroactive material layer disposed on or near the second current collector, and a separating layer disposed between the first electroactive material layer and the second electroactive material layer. The second electroactive material layer includes a plurality of hierarchical silicon columns, each of the hierarchical silicon columns has a longest dimension perpendicular to a major axis of the second current collector. The second electroactive material layer also includes a carbonaceous network that at least partially fills interstices defined between hierarchical silicon columns of the plurality of hierarchical silicon columns. The carbonaceous network includes linked carbon atoms that define a plurality of pores.
Abstract:
A solid-state electrolyte for an electrochemical cell that cycles lithium ions is provided. The solid-state electrolyte includes a sintered layer that includes a plurality of lithiated zeolite particles having pores and a lithium-containing material disposed in at least a portion of the pores of the lithiated zeolite particles. For example, each lithiated zeolite particle has a porosity greater than or equal to about 20 vol. % to less than or equal to about 80 vol. %, and the lithium-containing material occupies greater than or equal to about 20% to less than or equal to about 80% of a total porosity of each lithiated zeolite particle. In certain instances, the sintered layer further includes a superionic additive that is also disposed in a portion of the pores of the lithiated zeolite particles, such that the sintered layer has an ionic conductivity between about 1×10−5 S·cm−1 and about 1×10−1 S·cm−1.
Abstract:
A separator for an electrochemical cell that cycles lithium ions includes a microporous layer and one or more fire suppression layers disposed on at least one of a first side or an opposite second side of the microporous layer. The one or more fire suppression layers include a ceramic material having interconnected open pores and a cyclophosphazene disposed within the interconnected open pores of the ceramic material.
Abstract:
An all-solid-state electrochemical cell is provided. The electrochemical cell includes an electrode having a current collector that defines a major axis, and an electroactive material layer disposed on or adjacent to the current collector. The electroactive material layer includes a plurality of hierarchical silicon columns, and a solid sulfide electrolyte. The solid sulfide electrolyte is formed in-situ and fills greater than or equal to about 60 vol. % to less than or equal to about 100 vol. % of voids in the electroactive material layer. The voids being defined by openings between the hierarchical silicon columns. A longest dimension of each hierarchical silicon columns is perpendicular to the major axis of the second current collector.