High-modulus, high-strength nodular iron and crankshaft

    公开(公告)号:US11618937B2

    公开(公告)日:2023-04-04

    申请号:US16657146

    申请日:2019-10-18

    Abstract: A nodular iron alloy and automotive components, such as a crankshaft, are provided. The nodular iron alloy may include iron, about 2.2-3.2 wt % carbon, about 1.7-2.3 wt % silicon, about 0.2-0.6 wt % manganese, a maximum of 0.03 wt % phosphorus, a maximum of 0.02 wt % sulfur, about 0.2-0.6 wt % copper, about 0.1-0.4 wt % chromium, about 0.4-0.8 wt % nickel, about 0.15-0.45 wt % molybdenum, about 0.2-1.0 wt % cobalt, about 0.02-0.06 wt % magnesium, and a maximum of 0.002 wt % rare earth element(s). The nodular iron alloy may have a Young's modulus in the range of 175-195 GPa and an as-cast ultimate tensile strength in the range of 750-950 MPa. This alloy possesses favorable strength, stiffness and noise/vibration/harshness qualities, making it suitable in crankshaft applications. A method of forming the nodular iron alloy includes feeding a magnesium-based material into a molten iron alloy through a continuous system at a constant amount.

    JOINING OF FERROUS ALLOY COMPONENTS BY FUSION WELDING USING A LOW CARBON STEEL INTERMEDIATE ELEMENT

    公开(公告)号:US20210146479A1

    公开(公告)日:2021-05-20

    申请号:US16684055

    申请日:2019-11-14

    Abstract: A method of joining two ferrous alloy component parts. The method includes hot metal casting a portion of a first ferrous alloy component part onto a first joining surface of a low carbon intermediate element; friction fitting a joining surface of a second ferrous alloy component part against a second joining surface of the low carbon intermediate element; and fusion welding with a concentrated energy source the intermediate element to the second ferrous alloy component part. The hot metal casting includes flowing a molten ferrous alloy onto the textured first joining surface, wherein the molten ally encompasses tabs extending from the first joining surface and filling apertures defined in the intermediate element. Then cooling the molten ferrous alloy such that a metallurgical and mechanical bond is formed between the portion of the first ferrous alloy component part and the first joining surface of the low carbon intermediate element.

    METHOD OF IN-SITU REPAIR OF AN ULTRA-LARGE SINGLE-PIECE CASTING

    公开(公告)号:US20230339052A1

    公开(公告)日:2023-10-26

    申请号:US17729603

    申请日:2022-04-26

    CPC classification number: B23P6/04

    Abstract: A method of repairing an ultra-large single-piece cast component of a vehicle body. The method includes the steps of locating a damaged portion of the cast component, determining an extent of the damaged portion of the ultra-large cast component, defining a cut-line sectioning off the damaged portion from an undamaged portion of the ultra-large cast component, cutting along the cut-line to excise the damaged portion from the undamaged portion of the ultra-large cast component, and joining a replacement piece to the undamaged portion of the ultra-large cast component. The replacement piece is fabricated based on the original manufacturer’s geometry and dimensional data of the excised damaged portion. The undamaged portion of the ultra-large cast component remains on the vehicle body during the repair.

    System and method of manufacturing a resistance spot weld of workpieces

    公开(公告)号:US11794270B2

    公开(公告)日:2023-10-24

    申请号:US17307277

    申请日:2021-05-04

    Abstract: A system for increasing joint strength and reducing embrittlement in a resistance spot weld of metal workpieces is disclosed. The system comprises a stackup of first and second metal workpieces, and an interface member disposed between the first and second metal workpieces. The interface member comprises a peripheral wall defining a hollow inner portion. The peripheral wall has a first open end extending to a second open end. The first open end is in contact with the first metal workpiece defining a first weld portion thereon. The second open end is in contact with the second metal workpiece defining a second weld portion thereon. The system further comprises a first electrode configured to contact the first metal workpiece to heat the peripheral wall at the first weld portion and join the first metal workpiece with the first open end of the peripheral wall. The system further comprises a second electrode configured to contact the second metal workpiece to heat the peripheral wall at the second weld portion and join the second metal workpiece with the second open end of the peripheral wall to define a weld joint. The system further comprises a power source configured to power the first and second electrodes and a controller configured to control the power to the first and second electrodes to heat the peripheral wall.

    HIGH-MODULUS, HIGH-STRENGTH, LOW ALLOY GRAY CAST IRON FOR CYLINDER LINERS AND AUTOMOTIVE APPLICATIONS

    公开(公告)号:US20230070074A1

    公开(公告)日:2023-03-09

    申请号:US17462527

    申请日:2021-08-31

    Abstract: A high elastic modulus, high ultimate tensile strength, and low alloy gray cast iron for cylinder liners. The gray cast iron includes from 2.60 wt % to 3.30 wt % Carbon (C); from 1.50 wt % to 2.30 wt % Silicon (Si); from 0.30 wt % to 0.80 wt % Manganese (Mn); from 0.15 wt % to 0.35 wt % Phosphorus (P); from 0.05 wt % to 0.11 wt % Sulphur (S); from 0.60 wt % to 1.20 wt % Copper (Cu); from 0.10 wt % to 0.30 wt % Chromium (Cr); from greater than 0.0 wt % to 0.1 wt % Nickle (Ni); from 0.15 wt % to 0.40 wt % Molybdenum (Mo); and balance wt % Iron (Fe). The total wt % of Si, Mn, P, S, Cu, Cr, Ni, and Mo is less than about 4.10 wt %. The gray cast iron has a Carbon Equivalent (CE) from 3.00 wt % to 3.90 wt % and the product of Mn %*S % is from 0.025 to 0.045.

    Wear-resistant component and system

    公开(公告)号:US11447850B2

    公开(公告)日:2022-09-20

    申请号:US16394394

    申请日:2019-04-25

    Abstract: A wear-resistant component includes a substrate formed from a metal, defining a bore, and having a bore surface. The substrate includes a first region having a first microstructure adjacent the bore surface and a first average particle size. The substrate also includes a second region having a second microstructure adjacent the first microstructure and a second average particle size. The first average particle size is larger than the second average particle size. A system and a method of forming the wear-resistant coating are also described.

Patent Agency Ranking