Abstract:
An electrophoretic cell and methods of switching an electrophoretic cell and moving charged species in an electrophoretic cell employ differential electrophoretic mobilities and a time-varying electric field. The methods include providing first and second charged species that are oppositely charged and have different mobilities. The method of switching further includes inducing a net motion of both of the charged species using the time-varying applied electric field. The induced net motion results in either the first charged species being moved toward the electrode and the second charged species remaining essentially motionless or both of the charged species being moved toward the same electrode. The electrophoretic cell includes the first and second charged species with opposite charge and different mobilities, and further includes the time-varying applied electric field that provides the net motion of the charged species.
Abstract:
There is provided a display including a display including a number of display cells (400). Each of the display cells (400) includes a first electrode (414), which is transparent and disposed over a front surface of a display cell (400). A second electrode (418) is disposed opposite the first electrode (414). A dielectric layer (404) is disposed between the first electrode (414) and the second electrode (418), and is patterned to create a plurality of recessed volumes (408). A fluid is disposed in a volume defined by the first electrode (414), the dielectric layer (404), and the recessed volumes (408). The fluid (410) comprises a dye of a different color from an adjacent display cell (400). Charged particles (412) are disposed within the fluid (410). The display also includes a display driver configured to pack the charged particles (412) against the front of the display cell to create a first optical state, to pack the charged particles (412) against the back of the display cell (400) to create a second optical state, or to pack the particles into the recessed regions (408) to create a third optical state.
Abstract:
A method of and apparatus for obtaining radiation interaction data related to an image of an object. The method involves using a detector system for detecting and collecting spectroscopically resolvable information about incident radiation, and collecting one or more datasets of information at the detector after interaction with an object. Each dataset is resolved across at least three frequency bands within the spectrum of the source. The ratio between measured intensities is evaluated for at least two pairs of such frequency bands in a given intensity dataset to obtain a numerical indicator in functional relationship with a material property. The numerical indicator is then compared with a library of data characteristics of target materials. An apparatus is also disclosed for inspection of materials.
Abstract:
A method and apparatus for the identification and detection of composition of a liquid are disclosed. The invention involves detecting and collecting spectroscopically resolvable information about incident radiation, and collecting one or more datasets of intensity information at the detector system. Each dataset is resolved across at least three frequency bands within the spectrum of the source to produce an intensity data item for each band. A numerical relationship is evaluated for at least two pairs of frequency bands in a given intensity dataset to obtain a numerical indicator functionally related to a characteristic physical material property such as a material coefficient that varies functionally with radiation energy. The numerical indicator is compared with a library of data for a range of potential component liquids in order to obtain an indication of the likely composition of the liquid sample. An apparatus for use in identifying and detecting a liquid is also disclosed.
Abstract:
A method and apparatus for reading data bits stored on a storage medium is provided. The apparatus comprises a data probe structure including a data probe and at least one switch attached to the data probe, a controllable voltage source configured to supply voltage to the data probe structure, and a charge amplification structure configured to receive charge from the data probe structure. The controllable voltage source applies a first voltage to the data probe structure and subsequently applies a second voltage to the data probe structure, thereby causing a sense capacitance to charge and then discharge into the charge amplification structure. Certain embodiments of the design may employ dummy cells, diodes in place of switches, and may use a single line to control voltage switching. A lock-in amplifier approach is also presented.
Abstract:
A display element includes a variable optical element that changes appearance in response to changes in current, and a programmable resistance in series with the variable optical element. The resistance of the programmable resistance decreases in response to a first current in a first direction. The resistance of the programmable resistance increases in response to a second current in a second direction.
Abstract:
A media storage device is provided. The device comprises different configurations of a luminescent layer comprising a luminescent material capable of emitting light while being bombarded by a beam from a beam transmitter, a detector for detecting the light emitted from the luminescent layer, and a phase-change layer located proximate the luminescent layer. The phase-change layer is able to transform from a first phase to a second phase. Light emitted from the luminescent layer and received by the detector materially differs when the phase-change layer transforms from the first phase to the second phase.
Abstract:
A media storage device and method for fabricating said device is provided. The device comprises a data layer capable of storing and erasing data via application of an energy beam, such as a near field optical non diffraction limited beam or electron beam. A separate capping layer is deposited on the data layer. The separate capping layer is relatively transparent to the energy beam and may be formed from various materials, including but not limited to an epitaxial material, a conducting material, and a robust high melting point material, such as Molybdenum.
Abstract:
The present invention includes a data storage device and a method of reading data in a data storage device. Accordingly, a first aspect of the present invention is a data storage device. The data storage device includes a probe tip mounted on a suspension mechanism, a data storage layer, at least one conducting layer wherein a capacitance is formed between the suspension mechanism and the at least one conducting layer and a sensor for sensing a change in the capacitance based on a displacement of the probe tip due to the presence of a bit.
Abstract:
An ultra-high density data storage device using phase-change diode memory cells, and having a plurality of emitters for directing beams of directed energy, a layer for forming multiple data storage cells and a layered diode structure for detecting a memory or data state of the storage cells, wherein the device comprises a phase-change data storage layer capable of changing states in response to the beams from the emitters, and a second layer forming one layer in the layered diode structure, the second layer comprising a material containing copper, indium and selenium. A method of forming a diode structure for a phase-change data storage array, having multiple thin film layers adapted to form a plurality of data storage cell diodes, comprises depositing a first diode layer of CuInSe material on a substrate and depositing a second diode layer of phase-change material on the first diode layer.