Abstract:
A foldable electronic device, including: a foldable screen, where the foldable screen is made of a plurality of layers of materials; and a first housing and a second housing, where the first housing and the second housing are connected by using a folding shaft, traction mechanisms are disposed on the first housing and the second housing, an outermost layer of the foldable screen is fixedly connected to the first housing and the second housing, an innermost layer of the foldable screen is fixedly connected to the traction mechanisms, the traction mechanisms slide on the first housing and the second housing along a first direction, the traction mechanisms are configured to drag the layers of the foldable screen to be dislocated mutually, and the first direction is a direction perpendicular to the folding shaft.
Abstract:
This application provides a wireless power transfer unit, device, and method. The wireless power transfer unit includes a radiation source, a light-emitting body, a controller, and a metasurface. The radiation source is configured to emit an electromagnetic wave signal. The controller is configured to control the light-emitting body to provide light sources of different light intensities. The light-emitting body provides the light sources of different light intensities in response to control of the controller. The metasurface is configured to perform phase adjustment on the electromagnetic wave signal that is incident to the metasurface. Equivalent impedance of the metasurface varies with a change of the light intensity, so that an offset of a phase of the electromagnetic wave signal emitted through the metasurface also varies with the change of the light intensity.
Abstract:
A data storage method includes receiving to-be-stored first data; encrypting a first data part in the to-be-stored first data; writing an encrypted first data part into a non-volatile memory; and then writing a second data part into a hard disk or a magnetic disk.
Abstract:
A key-value (KV) storage method and apparatus, the method including receiving a write request, where the write request is associated with writing a first key and a first value, storing the first key in a first memory chip of a solid state drive (SSD), and storing the first value in a second memory chip of the SSD, where an erase count of the first memory chip is less than an erase count of the second memory chip, and creating a mapping relationship between the first key, a physical address of the first key, and a physical address of the first value, where the physical address of the first key indicates that the first key is stored in storage space of the first memory chip, and where the physical address of the first value indicates that the first value is stored in storage space of the second memory chip.
Abstract:
A folding device and a heat dissipation apparatus, where the folding device includes a heat collection element, including a heat collection plate and a first shaft sleeve, where a first end of the heat collection plate is in contact with a heat source in a first folding part, and a second end of the heat collection plate is coupled to an outer wall of the first shaft sleeve, the first shaft sleeve is sleeved on a rotating shaft, and a third end of the cooling element is in contact with the rotating shaft, and a fourth end of the cooling element is in contact with a heat dissipation device in a second folding part.
Abstract:
An intermittent lifting assembly, configured to drive a heat dissipation panel of the mobile terminal to open and close. The intermittent lifting assembly includes: a first driving piece that includes a first intermittent gear and a convex shoulder disposed on the first intermittent gear; a second driving piece that includes a second intermittent gear engaged with the first intermittent gear, where a position-limiting slot is disposed on the second intermittent gear, the position-limiting slot is configured to limit a position in which the convex shoulder rolls when teeth of the first intermittent gear and teeth of the second intermittent gear are out of an engaged state; and a gap for avoiding the second intermittent gear is disposed on the convex shoulder; and further includes a swing rod that is fastened to the second intermittent gear and configured to drive the heat dissipation panel to open or close.
Abstract:
Embodiments of this disclosure provide a content deployment method and a delivery controller. The content deployment method includes: receiving, by a delivery controller, a content deployment request from an application server controller, where the content deployment request includes identification information of requested content and address information of an application server storing the requested content; and sending, by the delivery controller, a first deployment cache request to a first cache server, where the first deployment cache request includes the identification information of the requested content and the address information of the application server, and the first deployment cache request is used to request the first cache server to obtain the requested content from the application server and cache the requested content. With the content deployment method and the delivery controller in the embodiments of this disclosure, content deployment under control of a content provider can be implemented.
Abstract:
A clock-less asynchronous processing circuit or system having a plurality of pipelined processing stages utilizes self-clocked generators to tune the delay needed in each of the processing stages to complete the processing cycle. Because different processing stages may require different amounts of time to complete processing or may require different delays depending on the processing required in a particular stage, the self-clocked generators may be tuned to each stage's necessary delay(s) or may be programmably configured.
Abstract:
Embodiments are provided for adding a token jump logic to an asynchronous processor with token passing. The token jump logic allows token forward jumps and token backward jumps over a cascade of token processing logics in the processor. An embodiment method includes determining, using a token jump logic coupled to a cascade of token processing logics, whether to administer a token forward jump or a token backward jump of a token signal passing through the token processing logics. The token forward jump and token backward jump allow the token signal to skip one or more token processing logics in the cascade. The method further includes monitoring, for each of the token processing logics, a polarity status of a token sense logic, and inverting the polarity status according to the determination at the token jump logic.
Abstract:
The present invention provides a chip dynamic voltage regulator circuit and a terminal device. The voltage regulator circuit includes: a parameter detecting module, configured to detect an attribute parameter of a chip; a Pulse Width Modulation (PWM) signal generating module, configured to generate a corresponding PWM digital signal according to the detected attribute parameter, and convert the PWM digital signal into an analog signal having a direct-current voltage; and a power supply module, including a DC-DC converter or a low-dropout regulator, which is configured to regulate an output voltage according to the analog signal that is fed back and a feedback signal of the voltage output end of the voltage regulator circuit. The present invention is capable of accurately regulating an output voltage according to an analog signal converted from a PWM digital signal, thereby implementing dynamic voltage regulation for a chip at a low cost and avoiding power waste.