Abstract:
A control method of a clutch for a vehicle may include determining whether or not learning of clutch characteristics is possible; learning the clutch characteristics when the learning of the clutch characteristics is possible; determining a clutch torque for controlling the clutch in consideration of a change amount in the clutch torque before and after the learning and controlling the clutch by the determined clutch torque; and determining whether or not it is difficult to continue to learn the clutch characteristics.
Abstract:
A shift control method for a vehicle with a double clutch transmission (DCT) is configured such that when a power-on upshift is initiated, during a target time for a controller to perform a torque phase, a release-side clutch is gradually released, an engine torque is gradually increased to a basic engine torque or more, and an engagement-side clutch torque is increased according to an increase in the engine torque and a vehicle speed; and when the release-side clutch is completely released, the controller reduces the engine torque while gradually reducing the engagement-side clutch torque to be equal to the basic engine torque, to perform an inertia phase such that an engine speed is synchronized with an engagement-side clutch speed.
Abstract:
The present disclosure provides technology for preventing burst of a clutch under the driving circumstance, which enters into a road surface with a high friction coefficient after passing through a road surface with a low friction coefficient in vehicle driving; and the present disclosure determines if a wheel-lock has occurred in driving based on a factor reflecting a driving status of the vehicle; upon determining occurrence of the wheel-lock, in the case that a vehicle speed rapidly increases and a difference value between a transmission input shaft speed and an engine speed, which form a current driving gear, is larger than a set value, blocks a mechanical engagement between a clutch and a wheel, which form the current driving gear.
Abstract:
The present disclosure is configured to include a slip entry determining step of determining, by a controller, whether a driver in a full-lock control releases an accelerator pedal to thereby enter into a micro-slip control; a monitoring step of monitoring, by the controller, whether the release of the clutch occurs, in case of entering into the micro-slip control as a result of performing the slip entry determining step; a control amount adjusting step of resetting a feedback amount of a clutch control torque in the case that the release of the clutch occurs; and a clutch control step of controlling the clutch according to the clutch control torque as reset by the control amount adjusting step to thereby prevent or minimize the release of the clutch.
Abstract:
The present disclosure relates to a shifting control method that improves driving stability by reducing roll-back of a vehicle during the process of shifting on an uphill slope. The shifting control method for a hybrid vehicle includes: determining a degree of roll-back of the vehicle on the basis of a change in the number of revolutions of a transmission input shaft, when power-off down-shifting into a lowest gear is requested; decreasing a disengaging clutch torque, increasing an engaging clutch torque, and increasing a motor torque so that the motor torque follows a desired motor torque, when the degree of roll-back is equal to or greater than a set value; synchronizing a motor speed with an engaging input shaft speed by decreasing the motor torque, when the disengaging clutch torque is equal to or less than a set torque; and finishing the shifting by increasing the motor torque when the synchronization is finished.
Abstract:
The present disclosure provides a control method for a vehicle with a DCT, the method including: a diagnosing step of disengaging a corresponding clutch and limiting engine torque to suppress an increase in engine RPM when a controller detects an error from a hall sensor signal, and then applying a test pulse for diagnosing the hall sensor; a reset attempting step of attempting to reset the clutch to an initial position when the controller determines that the hall sensor signal is normal after the diagnosing step; and a returning step of starting normal control of the clutch from the initial position to a target clutch stroke by means of the controller and of removing the limiting of the engine torque, when the clutch is reset to the initial position in the reset attempting step.
Abstract:
A clutch torque control method for a dual clutch transmission (DCT) vehicle may include a shift initiation determining step of determining whether power-on downshift in which a driver steps on an accelerator pedal to change a current shift stage to a lower shift stage is initiated, and a torque correcting step of correcting basic control torque according to torque-stroke (TS) curve characteristics for controlling a disengagement-side clutch within a real shift range in which a number of rotations of an engine is changed with observer torque calculated by a torque observer when the power-on downshift is initiated, and determining the corrected basic control torque into control torque of the disengagement-side clutch.
Abstract:
A control system for reducing rattle noise of a brake caliper may include a wheel speed sensor configured to detect a wheel speed of each wheel to which a caliper device is mounted, a controller configured to determine a vibration level value according to a road surface state by processing and analyzing a wheel speed signal received from the wheel speed sensor, and, when the road surface state of the road is determined as one in which unevenness exists, output a control signal for applying oil pressure for preventing rattle noise to a wheel cylinder of a brake device, a braking driver configured to generate and supply the oil pressure for preventing rattle noise according to the control signal output from the controller, and the wheel cylinder of the brake device, to which the oil pressure for preventing rattle noise, which is supplied by the braking driver, is applied.
Abstract:
A shifting control method for a vehicle with a Double Clutch Transmission (DCT), may include determining whether a manual range power-on up shift has been started, determining whether an actual shifting period has been started, when the manual range power-on up shift has been started, and applying additional predetermined compensation torque to basic torque applied to an engagement-side clutch, when the actual shifting period has been started.
Abstract:
A method of estimating transmission torque of a vehicle dry clutch may suitably estimate a variation in the characteristics of transmission torque relative to the actuator stroke of a dry clutch even during the driving of a vehicle, so that the dry clutch is more suitably controlled. In the method of estimating transmission torque of a dry clutch, a clutch is released so that a slip of the clutch occurs. If the slip of the clutch has occurred, the slip of the clutch is uniformly maintained. If the slip of the clutch is uniformly maintained, a relationship between a stroke of an actuator of the clutch and transmission torque of the clutch is determined from a relationship between the stroke of the actuator and torque of an engine in the uniformly maintained slip state.