摘要:
The present invention provides a CVD apparatus and a CVD method for use in forming an Al/Cu multilayered film. The Al/Cu multilayered film is formed in the CVD apparatus comprising a chamber for placing a semiconductor wafer W, a susceptor for mounting the semiconductor wafer W thereon, an Al raw material supply system for introducing a gasified Al raw material into the chamber and a Cu raw material supply system for introducing a gasified Cu raw material into the chamber. The Al/Cu multilayered film is formed by repeating a series of steps consisting of introducing the Al raw material gas into the chamber, depositing the Al film on the semiconductor wafer W by a CVD method, followed by generating a plasma in the chamber in which the Cu raw material gas has been introduced and depositing the Cu film on the semiconductor wafer W by a CVD method. The Al/Cu multilayered film thus obtained is subjected to a heating treatment (annealing), thereby forming a desired Al/Cu multilayered film.
摘要:
A substrate is disposed in a processing chamber. An organic Ta compound gas having Ta═N bond, a Si-containing gas and a N-containing gas are introduced into the processing chamber to form a TaSiN film on the substrate by CVD. In this film formation, at least one of a partial pressure of the Si-containing gas in the processing chamber, a total pressure in the processing chamber, a film forming temperature and a partial pressure of the N-containing gas in the processing chamber is controlled to thereby regulate Si concentration in the film. Particularly, when SiH4 gas is used as the Si-containing gas, the SiH4 gas partial pressure is determined based on the fact that the serried Si concentration in the film under giving process conditions can be expressed as a linear function involving the logarithm of the partial pressure of the SiH4 gas.
摘要:
The present invention relates to a method and apparatus for forming a thin film using the ALD process. Prior to the ALD process where each of a plurality of source gasses is supplied one by one, plural times, a pretreatment process is performed in which the source gasses are simultaneously supplied to shorten an incubation period and improve throughput.
摘要:
The present invention is a method of film deposition that comprises a first gas-supplying step of supplying a high-melting-point organometallic material gas to a processing vessel that can be evacuated, and a second gas-supplying step of supplying, to the processing vessel, a gas consisting of one, or two or more gases selected from a nitrogen-containing gas, a silicon-containing gas, and a carbon-containing gas, wherein a thin metallic compound film composed of one, or two or more compounds selected from a high-melting-point metallic nitride, a high-melting-point metallic silicate, and a high-melting-point metallic carbide is deposited on the surface of an object to be processed, placed in the processing vessel. The first and second gas-supplying steps are alternately carried out, and in these steps, the object to be processed is held at a temperature equal to or higher than the decomposition-starting temperature of the high-melting-point organometallic material.
摘要:
A method for forming a passivated metal layer that preserves the properties and morphology of an underlying metal layer during subsequent exposure to oxygen-containing ambients. The method includes providing a substrate in a process chamber, exposing the substrate to a process gas containing a rhenium-carbonyl precursor to deposit a rhenium metal layer on the substrate in a chemical vapor deposition process, and forming a passivation layer on the rhenium metal layer to thereby inhibit oxygen-induced growth of rhenium-containing nodules on the rhenium metal surface.
摘要:
An object of the present invention is to ensure the stable operation of a vacuum pump for discharging an unused source gas and reaction byproduct gases from a low-pressure processing chamber, to recover the reaction byproducts efficiently for the effective utilization of resources and reduction of running costs. A low-pressure CVD system has a processing vessel (10) for carrying out a low-pressure CVD process for forming a copper film, a source gas supply unit (12) for supplying an organic copper compound as a source gas, such as Cu(I)hfacTMVS, into the processing vessel (10), and an evacuating system (14) for evacuating the processing vessel (10). The evacuating system (14) includes a vacuum pump (26), a high-temperature trapping device (28) disposed above the vacuum pump (26) with respect to the flowing direction of a gas, and a low-temperature trapping device (30) disposed below the vacuum pump with respect to the flowing direction of a gas. The high-temperature trapping device (28) decomposes the unused Cu(I)hfacTMVS contained in a gas sucked out of the processing vessel (10) to trap metallic copper. The low-temperature trapping device traps Cu(II)(hfac)2 produced as a reaction byproduct.
摘要:
WF6 is used as a source gas of tungsten, and NH3 is used as a source gas of nitrogen. The partial pressure of WF6 is set to be higher than that of NH3. The substrate temperature is set to about 400° C. to 450° C. Tungsten nitride is deposited and then heated, to form a contact plug (106).
摘要:
A film-forming unit of the invention includes a processing container in which a vacuum can be created, a stage arranged in the processing container, on which an object to be processed is placed, a process-gas supplying means for supplying a process gas into the processing container, and a heating means for heating the object to be processed placed on the stage. A division wall surrounds a lateral side and a lower side of the stage. An inert gas is introduced into a stage-side region surrounded by the division wall, by an inert-gas supplying means. A gap-forming member is arranged in such a manner that its inner peripheral portion is arranged above a peripheral portion of the object to be processed placed on the stage via a gap and its outer peripheral portion is arranged above the division wall via a gap.
摘要:
In a semiconductor device manufacturing method, an interlevel insulating film is formed on a silicon substrate. A trench is formed in the interlevel insulating film. A lower underlying film made of a tungsten-based material is formed by thermal chemical vapor deposition to cover a bottom surface and side surface of the trench. An upper underlying film made of a tungsten-based material is formed by thermal chemical vapor deposition on an entire region on the lower underlying film. A copper film made of copper fills the trench. The upper underlying film is formed in accordance with thermal chemical vapor deposition by supplying a tungsten source gas and the other source gas such that the other source gas is supplied in an amount lager than that of the tungsten source gas. The lower underlying film is formed in accordance with thermal chemical vapor deposition by increasing a content of the tungsten source gas to be larger than to that of the other source gas in formation of the lower underlying film.
摘要:
The present invention provides a CVD apparatus and a CVD method for use in forming an Al/Cu multilayered film. The Al/Cu multilayered film is formed in the CVD apparatus comprising a chamber for placing a semiconductor wafer W, a susceptor for mounting the semiconductor wafer W thereon, an Al raw material supply system for introducing a gasified Al raw material into the chamber and a Cu raw material supply system for introducing a gasified Cu raw material into the chamber. The Al/Cu multilayered film is formed by repeating a series of steps consisting of introducing the Al raw material gas into the chamber, depositing the Al film on the semiconductor wafer W by a CVD method, followed by generating a plasma in the chamber in which the Cu raw material gas has been introduced and depositing the Cu film on the semiconductor wafer W by a CVD method. The Al/Cu multilayered film thus obtained is subjected to a heating treatment (annealing), thereby forming a desired Al/Cu multilayered film.