摘要:
The present invention has an object to provide a semiconductor device, an ID tag, in which delay of signal transmission with conductive layers is controlled. In addition, the other object is that a design method of such a semiconductor device is provided.A semiconductor device of the invention comprises a plurality of conductive layers, a plurality of first element groups each of which selects one among the conductive layers and a plurality of second element groups each of which amplifies a signal each transmitted from the conductive layers. Each of the second element groups is disposed between the first element groups. Stated another way, the first element group and the second element group are disposed alternately. The delay of the signal transmission with the plurality of conductive layers is controlled because a load by a parasitic capacitance is reduced due to the above feature.
摘要:
It is an object of the present invention to provide a semiconductor device in which reading and writing of data can be accurately performed by preventing malfunction even when a selection of address delays. A semiconductor device of the invention has three factors of a data holding unit, a precharge unit and a delay unit. The data holding unit comprises a plurality of memory cells. The precharge unit comprises a precharge potential line, a precharge signal line and a plurality of switches. The delay unit comprises a plurality of transistors. In addition, it has one or both of an address selecting unit having a column-decoder and a row-decoder and a display unit having a plurality of pixels, as well as the three factors.
摘要:
According to the invention, a plurality of semiconductor devices which are required to have conformance are formed from crystalline semiconductor films having uniform crystallinity on the same line, and a semiconductor circuit in which variation between semiconductor devices is small can be provided, and a semiconductor integrated circuit having high conformance can be provided. The invention is characterized in that, in a part or whole of thin film transistors which configure an analog circuit such as a current mirror circuit, a differential amplifier circuit, or an operational amplifier, in which high conformance is required for semiconductor devices included therein, channel forming regions have crystalline semiconductor films on the same line. High conformance can be expected for an analog circuit which has the crystalline semiconductor films on the same line formed using the invention as the channel forming regions of the thin film transistors. That is, the invention is characterized in that, among the thin film transistors which configures the analog circuit, the channel forming regions of the thin film transistors having at least the same polarity are formed on the same line.
摘要:
According to the invention, a plurality of semiconductor devices which are required to have conformance are formed from crystalline semiconductor films having uniform crystallinity on the same line, and a semiconductor circuit in which variation between semiconductor devices is small can be provided, and a semiconductor integrated circuit having high conformance can be provided. The invention is characterized in that, in a part or whole of thin film transistors which configure an analog circuit such as a current mirror circuit, a differential amplifier circuit, or an operational amplifier, in which high conformance is required for semiconductor devices included therein, channel forming regions have crystalline semiconductor films on the same line. High conformance can be expected for an analog circuit which has the crystalline semiconductor films on the same line formed using the invention as the channel forming regions of the thin film transistors. That is, the invention is characterized in that, among the thin film transistors which configures the analog circuit, the channel forming regions of the thin film transistors having at least the same polarity are formed on the same line.
摘要:
To provide a semiconductor device including an RFID which can transmit and receive individual information without checking of the remaining charge of a battery or a replacing operation of the battery in accordance with deterioration over time of the battery for driving, and can maintain an excellent state for transmission and reception of individual information even when power of a radio wave or an electromagnetic wave from outside is insufficient. A battery (also described as a secondary battery) is provided as a power supply for supplying power to the RFID. Then, when power which is obtained from a signal received from outside is larger than predetermined power, its surplus power is stored in the battery; and when the power which is obtained from the signal received from outside is smaller than the predetermined power, power which is obtained from the battery is used for the power for driving.
摘要:
Probability of malfunction of a semiconductor storage device is reduced. A shielding layer is provided between a memory cell array (e.g., a memory cell array including a transistor formed using an oxide semiconductor material) and a peripheral circuit (e.g., a peripheral circuit including a transistor formed using a semiconductor substrate), which are stacked. With this structure, the memory cell array and the peripheral circuit can be shielded from radiation noise generated between the memory cell array and the peripheral circuit. Thus, probability of malfunction of the semiconductor storage device can be reduced.
摘要:
The present invention provides a battery as a power supply for supplying power in the RFID, and another antenna for charging the battery, in addition to an antenna which transmits and receives individual information to and from outside as a means for supplying power to the battery.
摘要:
A semiconductor device capable of wireless communication which has low power consumption in a step for decoding an encoded signal to obtain data is provided. The semiconductor device includes an antenna configured to convert received carrier waves into an AC signal, a rectifier circuit configured to rectify the AC signal into a DC voltage, a demodulation circuit configured to demodulate the AC signal into an encoded signal, an oscillator circuit configured to generate a clock signal having a certain frequency by supply of the DC voltage, a synchronizing circuit configured to generate a synchronized encoded signal by synchronizing the encoded signal obtained by demodulating the AC signal with the clock signal, a decoder circuit configured to decode the synchronized encoded signal into a decoded signal, and a register configured to store the decoded signal as a clock (referred to as a digital signal).
摘要:
A liquid crystal display device with low power consumption is provided. In the liquid crystal display device having a source signal line driver circuit, a gate signal line driver circuit, a DAC controller, and a pixel portion and performing an image display using an n-bit (n is a natural number, n≧2) digital image signal, one pixel has memory circuits for storing an n-bit digital image signal and a D/A converter, and the n-bit digital image signal for one frame can be stored in the pixel. In case of a static image display, the image signal stored in the memory circuits is read out every frame to perform the display, and thus, only a DAC controller is driven during the display. Therefore, this contributes to a reduction of the power consumption of the entire liquid crystal display device.
摘要:
In a semiconductor device, gate signal lines are spaced apart from each other above a crystalline semiconductor film. Therefore a first protective circuit is not electrically connected when contact holes are opened in an interlayer insulating film. The static electricity generated during dry etching for opening the contact holes moves from the gate signal line, damages a gate insulating film, passes the crystalline semiconductor film, and again damages the gate insulating film before it reaches the gate signal line. As the static electricity generated during the dry etching damages the first protective circuit, the energy of the static electricity is reduced until it loses the capacity of damaging a driving circuit TFT. The driving circuit TFT is thus prevented from suffering electrostatic discharge damage.