Abstract:
A monolithic ink-jet printhead includes a substrate which has an ink chamber to be supplied with ink, a manifold for supplying ink to the ink chamber, and an ink channel for providing communication between the ink chamber and the manifold, a nozzle plate including a plurality of passivation layers sequentially stacked on the substrate, a metal layer formed on the passivation layers, and a nozzle, through which ink is ejected from the ink chamber, that penetrates the nozzle plate, a heater provided between adjacent passivation layers, the heater being located above the ink chamber for heating ink within the ink chamber, a conductor provided between adjacent passivation layers, the conductor being electrically connected to the heater for applying a current to the heater, and a hydrophobic coating layer formed exclusively on an outer surface of the metal layer.
Abstract:
A method of fabricating a micro electromechanical system (MEMS) structure which can be vacuum-packaged at the wafer level is provided. The method includes the steps of forming a multilayered stack including a signal line on a first wafer; bonding a second wafer to the multilayered stack; polishing the first wafer to a predetermined thickness; forming a MEMS structure in a vacuum area of the first wafer and a pad outside the vacuum area, the MEMS structure and the pad being connected to the signal line; forming a structure in a third wafer to have space corresponding to the vacuum area of the MEMS structure; and bonding the third wafer to the polished surface of the first wafer in a vacuum state. For protection of the structure and maintaining a vacuum level required for operation, the fabricated structure is vacuum-packaged at the wafer level, thereby improving the yield of fabrication. In addition, since a special vacuum packaging process is not necessary, the fabrication can be simplified.
Abstract:
A backlight unit of a three-dimensional (3D) display has a plurality of cells and a 3D image is formed by adjusting directions of light emitted from the cells. The backlight unit includes an emission unit that adjusts an emission direction of light from a cell with respect to other cells. The backlight unit divides view areas to provide left-eye and right-eye images, thereby generating a 3D image.
Abstract:
Provided is a 3-dimensional (3D) display apparatus including a light source, a beam scanner, and a beam deflector array. The beam scanner scans light emitted by the light source, and the beam deflector array includes a plurality of beam deflectors arranged in an array to reproduce a light field by changing a direction of light rays scanned by the beam scanner.
Abstract:
A light refraction controlling panel, a 3D-display, and a method of operating a 3D-display are provided. The light refraction controlling panel includes a transparent substrate, a barrier wall on the transparent substrate, first to fourth electrodes on the barrier wall, the first to fourth electrodes being separated from each other, an electro-wetting prism within the barrier wall, the electro-wetting prism being configured to refract incident light to a desired direction, and an isolation layer between the barrier wall and the first to fourth electrodes, and the electro-wetting prism. One electrode of two adjacent electrodes of the first to fourth electrodes is inside an other electrode of the two adjacent electrodes.
Abstract:
A two-dimensional (2D)/three-dimensional (3D) switchable image display device is provided. The 2D/3D switchable image display device forms gradation of an image in a light modulation panel, provides color to light beams that penetrate a plurality of electro-wetting prisms arranged in correspondence to the plurality of pixels of the image, and adjusts the direction of the light beam such that the light beams of the pixels of the image are directed towards at least two different view zones in a 3D mode and such that the light beams maintain their paths in a 2D mode.
Abstract:
Provided is a transflective display apparatus including a color reflective plate disposed at a light emitting surface of a light guide plate, and a display panel disposed at another surface of the light emitting surface of the light guide plate so that light emitted from a light source is reflected by a color reflective plate through the light guide plate and travels toward the display panel.
Abstract:
A monolithic ink-jet printhead includes a substrate which has an ink chamber to be supplied with ink, a manifold for supplying ink to the ink chamber, and an ink channel for providing communication between the ink chamber and the manifold, a nozzle plate including a plurality of passivation layers sequentially stacked on the substrate, a metal layer formed on the passivation layers, and a nozzle, through which ink is ejected from the ink chamber, that penetrates the nozzle plate, a heater provided between adjacent passivation layers, the heater being located above the ink chamber for heating ink within the ink chamber, a conductor provided between adjacent passivation layers, the conductor being electrically connected to the heater for applying a current to the heater, and a hydrophobic coating layer formed exclusively on an outer surface of the metal layer.
Abstract:
A monolithic ink-jet printhead includes a substrate having a lower ink chamber formed on an upper surface thereof, a manifold for supplying ink to the lower ink chamber formed on a bottom surface thereof, and an ink channel providing communication therebetween; a nozzle plate having a plurality of passivation layers and a metal layer sequentially stacked on the substrate, the nozzle plate having an upper ink chamber formed therein on a bottom surface of the metal layer, a nozzle in communication with the upper ink chamber formed on an upper surface of the metal layer, and a connection hole providing communication between the upper ink chamber and the lower ink chamber; a heater located between the upper ink chamber and the lower ink chamber for heating ink contained in the lower and upper ink chambers; and a conductor electrically connected to the heater to apply a current to the heater.
Abstract:
Disclosed is a method for forming a plurality of metal structures having different heights on a semiconductor substrate. The disclosed method for manufacturing a metal structure having different heights includes: forming a plurality of seed layers, to have heights corresponding to the metal structure to be formed, on a semiconductor substrate so that those layers can be electrically separated, performing a plating process using a plating mold, and applying different currents to the respective seed layers so that the plating thickness can be adjusted for each of the seed layers. Accordingly, a plurality of metal structures having different heights can be obtained by a plating mold forming process and a plating process that are performed just once, respectively.