Abstract:
A cross-point memory array and method for manufacturing. The memory array includes a plurality of first conductive line structures formed in a dielectric material layer; a plurality of memory elements, each memory element including a fill-in phase change memory (PCM) cell, and an access device enabling read or write access to said memory PCM structure; a plurality of second conductive line structures, the plurality of second conductive structures perpendicularly oriented relative to the plurality of first conductive structures. An individual memory element of the plurality of memory elements is conductively connected at a respective intersection between a first conductive line structure and a second conductive line structure. Each phase change memory (PCM) cell of a memory element at an intersection having a sub-lithographic conductive tuning liner disposed on only one sidewall of the PCM cell. The manufacturing maintains a minimal number of masking and processing steps.
Abstract:
Non-volatile memory cell having small programming power and a reduced resistance drift are provided. In one embodiment of the present application, a non-volatile memory cell is provided that includes a layer of dielectric material that has a via opening that exposes a surface of a bottom electrode. A metal nitride spacer is located along a bottom portion of each sidewall surface of the layer of dielectric material and in the via opening. A phase change material structure is present in the via opening and contacting a top portion of each sidewall surface of the layer of dielectric material and a topmost surface of each metal nitride spacer. A top electrode is located on a topmost surface of the phase change material structure.
Abstract:
Non-volatile memory cell having small programming power and a reduced resistance drift are provided. In one embodiment of the present application, a non-volatile memory cell is provided that includes a layer of dielectric material that has a via opening that exposes a surface of a bottom electrode. A metal nitride spacer is located along a bottom portion of each sidewall surface of the layer of dielectric material and in the via opening. A phase change material structure is present in the via opening and contacting a top portion of each sidewall surface of the layer of dielectric material and a topmost surface of each metal nitride spacer. A top electrode is located on a topmost surface of the phase change material structure.
Abstract:
A structure comprising a top electrode and a bottom electrode. The structure further comprises a multilayer stack disposed between the top electrode and the bottom electrode, where the multilayer stack comprises alternating confinement layers and phase-change material layers, and where at least two of the phase-change material layers have different doping concentrations of at least one dopant.
Abstract:
A phase change memory (PCM) cell comprises a first electrode comprised of a first electrically conductive material, a second electrode comprised of a second electrically conductive material, a first phase change layer positioned between the first electrode and the second electrode and being comprised of a first phase change material, and a second phase change layer positioned between the first electrode and the second electrode and being comprised of a second phase change material. The first phase change material has a first resistivity, the second phase change material has a second resistivity, and wherein the first resistivity is at least two times the second resistivity.
Abstract:
A phase change memory (PCM) cell comprises a first electrode comprised of a first electrically conductive material, a second electrode comprised of a second electrically conductive material, a first phase change layer positioned between the first electrode and the second electrode and being comprised of a first phase change material, and a second phase change layer positioned between the first electrode and the second electrode and being comprised of a second phase change material. The first phase change material has a first resistivity, the second phase change material has a second resistivity, and wherein the first resistivity is at least two times the second resistivity.
Abstract:
According to one embodiment, a method, computer system, and computer program product for increasing linearity of a weight update of a phase change memory (PCM) cell is provided. The present invention may include applying a RESET pulse to amorphize the phase change material of the PCM cell; responsive to applying the RESET pulse, applying an incubation pulse to the PCM cell; and applying a plurality of partial SET pulses to incrementally increase the conductance of the PCM cell.
Abstract:
According to one embodiment, a method, computer system, and computer program product for increasing linearity of a weight update of a phase change memory (PCM) cell is provided. The present invention may include applying a RESET pulse to amorphize the phase change material of the PCM cell; responsive to applying the RESET pulse, applying an incubation pulse to the PCM cell; and applying a plurality of partial SET pulses to incrementally increase the conductance of the PCM cell.
Abstract:
Aspects of the present invention provide a semiconductor structure for a phase change memory device that includes a heater element on a bottom electrode that is surrounded by a dielectric material. The phase change memory device includes a metal nitride liner over the heater element, where the metal liner is oxide-free with a desired electrical resistance. The phase change memory device includes a phase change material is over the heater element and the dielectric material and a top electrode is over the phase change material.
Abstract:
A phase change memory (PCM) cell comprises a first electrode comprised of a first electrically conductive material, a second electrode comprised of a second electrically conductive material, a first phase change layer positioned between the first electrode and the second electrode and being comprised of a first phase change material, and a second phase change layer positioned between the first electrode and the second electrode and being comprised of a second phase change material. The first phase change material has a first resistivity, the second phase change material has a second resistivity, and wherein the first resistivity is at least two times the second resistivity.