Abstract:
A method of assigning an auxiliary input device to control a surgical instrument in a robotic surgical system may include detecting a first surgical instrument coupled to a first manipulator interface assembly of a teleoperated surgical system, the manipulator interface assembly being controlled by a first input device; detecting which one of a user's left and right hands operates the first input device; and assigning control of an auxiliary function of the first surgical instrument to a first auxiliary input device disposed in a left position relative to a second auxiliary input device if the user's left hand is detected to operate the first input device, or assigning control of an auxiliary function of the first surgical instrument to a second auxiliary input device disposed in a right position relative to the first auxiliary input device if the user's right hand is detected to operate the first input device. A frame of reference of the left position and right position is relative to a user operating the first input device.
Abstract:
A method for a minimally invasive surgical system is disclosed including reading first tool information from a storage device in a first robotic surgical tool mounted to a first robotic arm to at least determine a first tool type; reading equipment information about one or more remote controlled equipment for control thereof; comparing the first tool information with the equipment information to appropriately match a first remote controlled equipment of the one or more remote controlled equipment to the first robotic surgical tool; and mapping one or more user interface input devices of a first control console to control the first remote controlled equipment to support a function of the first robotic surgical tool.
Abstract:
A surgical stapling instrument is configured to dissect tissue, apply a linear staple line along one side of the tissue dissection and apply a suture, such as a purse string suture, to the other side of the tissue dissection. The instrument comprises an elongate shaft, first and second jaws configured to open and close and a cutting element. The instrument includes a first row of staples in each of the first and second jaws having a suture extending therethrough and a second row of staples in the second jaw. A drive member is configured to translate distally through the end effector to dissect tissue with the cutting element, drive the second row of staples into the tissue on one side of the dissection and to apply the first row of staples and suture in combination to form a purse string suture on the other side of the tissue dissection.
Abstract:
A surgical stapler for applying a suture to tissue includes a first jaw and a second jaw configured to receive a cartridge. An actuation mechanism translates a drive member distally through the first and second jaws to apply staples to tissue such that a suture, in combination with the staples, forms a purse string when the stapler activated. The cartridge includes a first upper portion and a second lower portion.
Abstract:
A robotic system includes a base movable relative to a floor surface and a controllable arm extending from the base. The arm is configured to support and move a tool. The arm has a powered joint operable to position and/or orient a distal portion of the arm. The robotic system further includes a processor coupled to the powered joint and configured to drive the powered joint to reposition the base while the position and/or orientation of the distal portion of the arm is maintained.
Abstract:
A robotic system includes a base movable relative to a floor surface and a controllable arm extending from the base. The arm is configured to support and move a tool. The arm has a powered joint operable to position and/or orient the tool. The robotic system further includes a positioning indicator. A processor operates the positioning indicator to direct a manual repositioning of the base relative to the floor surface while the processor is operating the powered joint to maintain the position and/or orientation of the tool during the manual repositioning.
Abstract:
Devices, systems, and methods for reconfiguring a surgical manipulator by moving the manipulator within a null-space of a kinematic Jacobian of the manipulator arm. In one aspect, in response to receiving a reconfiguration command, the system drives a first set of joints and calculates velocities of the plurality of joints to be within a null-space. The joints are driven according to the reconfiguration command and the calculated movement so as to maintain a desired state of the end effector or a remote center about which an instrument shaft pivots. In another aspect, the joints are also driven according to a calculated end effector or remote center displacing velocities within a null-perpendicular-space of the Jacobian so as to effect the desired reconfiguration concurrently with a desired movement of the end effector or remote center.
Abstract:
A robotic system includes a base movable relative to a floor surface and a controllable arm extending from the base. The arm is configured to support and move a tool. The arm has a powered joint operable to position and/or orient the tool. The robotic system further includes a positioning indicator. A processor operates the positioning indicator to direct a manual repositioning of the base relative to the floor surface while the processor is operating the powered joint to maintain the position and/or orientation of the tool during the manual repositioning.
Abstract:
A slave manipulator manipulates a medical device in response to operator manipulation of an input device through joint control systems. The stiffness and strength of the slave manipulator are adjustable according to criteria such as the mode of operation of the slave manipulator, the functional type of the medical device currently being held by the slave manipulator, and the current phase of a medical procedure being performed using the slave manipulator by changing corresponding parameters of the control system. For safety purposes, such changes are not made until it is determined that it can be done in a smooth manner without causing jerking of the medical device. Further, an excessive force warning may be provided to surgery staff when excessive forces are being commanded on the slave manipulator for more than a specified period of time.
Abstract:
A method of assigning an auxiliary input device to control a surgical instrument in a robotic surgical system can include automatically assigning an auxiliary input device to control an auxiliary function of a surgical instrument based on a position of the auxiliary input device and which of a user's hands is operating another input device operably coupled to control movement of the surgical instrument. A system for controlling a surgical instrument may include an input device of a surgical system that is operably coupled to generate and transmit an input control signal to control movement of a surgical instrument operably coupled to the surgical system. The system may further include an auxiliary input device, and a control system operably coupling the auxiliary input device to control an auxiliary function of the surgical instrument based on a position of the auxiliary input device and which of a user's hands is operating the input device.