Abstract:
User equipment (UE), and access point (AP) of an unsecured network and method of providing a quasi-orthogonal multiple access (QOMA) resources are generally described. The UE may determine whether it is roaming and if not connect to a home public land mobile network (HPLMN) Enhanced Packet Data Gateway (ePDG). The UE, when roaming, may retrieve ePDG selection information indicating to which of the HePDG and a visited public land mobile network (VPLMN) ePDG (VePDG) to attempt to connect, and connect to whichever of the HePDG and the VePDG is indicated by the ePDG selection information. The UE, when roaming and cannot connect to any PLMN, may extract from the ePDG selection information a default fully qualified domain name (FQDN) corresponding to a particular PLMN and connect to the ePDG corresponding to the particular PLMN through the AP based on the default FQDN.
Abstract:
Some demonstrative embodiments include devices, systems and methods of providing offloadability information to a User Equipment (UE). For example, a core network (CN) may provide to the UE Packet Data Network (PDN) offloadability information corresponding to one or more PDN connections of the UE, the PDN offloadability information indicating which PDN connection of the one or more PDN connections is able to be offloaded to a Wireless Local Area Network (WLAN).
Abstract:
Briefly, in accordance with one or more embodiments, a user equipment (UE) is configured to connect to a network with a multiple access packet data network gateway connection over a wireless wide area network (WWAN) and a wireless local area network (WLAN), enter an idle state for WWAN access, receive a page over the WLAN for WWAN service, connect to the network via the WWAN, and receive the service via the WWAN. A serving gateway (S-GW) is configured to provide a multi-access PDN connection to a UE over a WWAN simultaneously with a WLAN, receive a service to be provided over WWAN access, page the UE via the trusted or untrusted WLAN if the UE is in an idle state, connect with the UE via the WWAN after receiving a response from the UE, and provide the service to the UE via the WWAN.
Abstract:
Methods, systems, and devices for network selection are disclosed herein. User equipment (UE) includes a communication component, a rules component, and a network selection component. The communication component may be configured to communicate over a 3GPP network and a non-cellular network. The rules component may be configured to store an access network discovery and selection function (ANDSF) management object (MO) that includes wireless local area network (WLAN) selection policies for network selection on the UE. The WLAN selection policies may include interworking WLAN (I-WLAN) policies and Hotspot 2.0 (HS2.0) parameters. The network selection component is configured to select an available WLAN based on the ANDSF MO.
Abstract:
Some demonstrative embodiments include devices, systems and methods of providing offloadability information to a User Equipment (UE). For example, a core network (CN) may provide to the UE Packet Data Network (PDN) offloadability information corresponding to one or more PDN connections of the UE, the PDN offloadability information indicating which PDN connection of the one or more PDN connections is able to be offloaded to a Wireless Local Area Network (WLAN).
Abstract:
Methods, systems, and devices for network selection and traffic routing are disclosed herein. User equipment (UE) is configured to store an access network selection and detection function (ANDSF) management object (MO). The ANDSF MO may include network selection rules indicating relative priority based on a specific radio access technology (RAT) types of different access networks. The UE is configured to identify one or more available access networks. The UE is configured to establish a connection with an access network of the one or more available access networks. The UE establishes the connection with an access network having, a RAT with a highest relative priority of the one or more available access networks based on the network selection rules.
Abstract:
User equipment (UE), and access point (AP) of an unsecured network and method of providing a quasi-orthogonal multiple access (QOMA) resources are generally described. The UE may determine whether it is roaming and if not connect to a home public land mobile network (HPLMN) Enhanced Packet Data Gateway (ePDG). The UE, when roaming, may retrieve ePDG selection information indicating to which of the HePDG and a visited public land mobile network (VPLMN) ePDG (VePDG) to attempt to connect, and connect to whichever of the HePDG and the VePDG is indicated by the ePDG selection information. The UE, when roaming and cannot connect to any PLMN, may extract from the ePDG selection information a default fully qualified domain name (FQDN) corresponding to a particular PLMN and connect to the ePDG corresponding to the particular PLMN through the AP based on the default FQDN.
Abstract:
Described herein are systems, apparatuses, and processes for obtaining data for a specific PDN connection of a cellular network. A UE executes one or more applications utilizing one or more PDN connections of a cellular network. A TE generates an AT command for an MT, the AT command comprising a request for data for a specific PDN connection that can be offloaded from the cellular network to a non-cellular network, assistance data for determining offloading of traffic, and cellular signal measurements. The TE receives an AT command response, corresponding to the AT command, comprising data of whether the specific PDN connection can be offloaded, offload assistance data, and/or cellular network measurement data. The TE may receive unsolicited result codes when offloadablity of a PDN connection changes, offload assistance data changes, or when cellular signal measurements meet offload assistance criteria.
Abstract:
Systems and methods for transmitting AT commands indicating whether Evolved Packet System (EPS) Session Management (ESM) information should be transmitted securely are disclosed herein. A Terminal Equipment (TE) may transmit an AT command to a Mobile Termination (MT). The AT command may indicate whether protocol configuration options (PCO) should be ciphered and/or whether an access point name (APN) is provided. In some embodiments, the AT command may be a dedicated command and may only include a parameter and an parameter. Alternatively, or in addition, the AT command may include a parameter, an parameter, and/or additional parameters serving additional functions. Whether the APN is provided may be determined based on whether the parameter is present and includes a non-null value. The AT command may be related to a single packet data network (PDN) connection or may relate to a plurality of PDN connections.
Abstract:
Technology for using an open mobile alliance (OMA) management object (MO) for congestion control in mobile networks is described. A novel type of OMA MO for application specific access control (ASAC) can include internet protocol (IP) flow descriptions that can be used to characterize applications with fine granularity. Priorities can be assigned to IP flows based on the IP flow descriptions. A user equipment (UE) can receive such an OMA MO and also receive application-barring information regarding a congestion level in a mobile network with which an application at the UE wishes to connect. The UE can have a connectivity manager (CM) that determines whether to allow the application to establish a connection with the mobile network based on the priority level of the application's associated IP flow and the application-barring information.