Abstract:
A method for mapping a sensor pixel array to an illumination pixel array according to a surface forms a group mapping by assigning each pixel to a corresponding group, each group with p adjacent pixels on the illumination array and each ordered set having k groups, by projecting and recording a sequence of group index images. Each group index image has, in at least two of the groups, no illuminated pixels and in fewer than (k−1) groups, from 2 to (p−1) adjacent illuminated pixels. The sequence of group index images uses pixels from each of the k groups. At least p multiline images are projected and recorded, wherein each multiline image projects a line within each group. Lines in the multiline images are correlated according to the group mapping and the correlation stored in memory. Integers k and p are greater than or equal to 3.
Abstract:
A method for mapping a sensor pixel array to an illumination pixel array according to a surface forms a group map by assigning each pixel on the sensor array to a corresponding group of an ordered set of groups, each group defined by a set of p adjacent pixels on the illumination pixel array by projecting and recording at least n projected images from a first set of n binary patterns, with transitions between pixels in each of the n binary patterns only at group boundaries. At least m images from a second set of m binary patterns are projected and recorded, with one or more transitions between pixels in each of the m binary pattern offset from group boundaries. At least p multiline images are projected and recorded. Lines in the recorded multiline images are correlated with lines in the multiline images according to the group map.
Abstract:
A method and apparatus for generating a color mapping for a dental object. The method includes generating a transformation matrix according to a set of spectral reflectance data for a statistically valid sampling of teeth. Illumination is directed toward the dental object over at least a first, a second, and a third wavelength band, one wavelength band at a time. For each of a plurality of pixels in an imaging array, an image data value is obtained, corresponding to each of the at least first, second, and third wavelength bands. The transformation matrix is applied to form the color mapping by generating a set of visual color values for each of the plurality of pixels according to the obtained image data values and according to image data values obtained from a reference object at the at least first, second, and third wavelength bands. The color mapping can be stored in an electronic memory.
Abstract:
A passive-matrix pixel light emitting display structure and a method of making same. The display structure includes display area formed on a substrate. A set of busses is provided over the substrate that extends from an edge of the substrates across a predetermined portion of the substrate. An insulating layer is provided over the busses so that only the electrode pad and the end adjacent the edge of the bus is exposed. At least three sets of first electrode segments are located over the entire display area, each set of first electrode segments extending for only a portion of the length of the substrate and each of the first electrode segments designed to be active in a different portion of the display area. One or more layers of materials wherein at least one of which comprises light-emissive materials, is located over the first electrode segments. At least three sets of second electrode segments are located over the one or more layers of organic materials and entire display area and each set of the second electrode segments being designed to be active in a different portion of the display area. One of the three sets of second electrode segments being in contact with the exposed electrode busses, each of the first set of first electrode segments being associated with one set of the three sets of second electrode segments so as to form a plurality of display segments in the display area.
Abstract:
The invention provides an inexpensive and compact bar code reader that is capable of reading separate clock and data tracks of a DX bar code without the use of custom optical devices or optical projection. The bar code reader includes first and second light sources, a photodetector device that generates an output signal proportional to the amount of light directed to the photodetector device from the first and second light sources, an analog-to-digital converter that samples the output signal of the photodetector device to generate digital data signals, and a control processor that controls the operation of the first and second light sources.
Abstract:
A composite optical interference filter is used in a film scanning system having a high speed CCD imager. Multiple, alternating, variable thickness layers of higher and lower index thin film oxides deposited on an optically transmissive substrate constitute the filter and enable the filter to provide color balance, notch rejection, and IR rejection all in the same device. Three such filters in a lamphouse of the film scanning system can be selected to match the system spectral response of the CCD imager and the film thereby providing equal density and color balance of the images on the film.
Abstract:
The present image sensor mounting system is particularly adapted to the mounting of a linear sensor array, of the type having a transparent window on a front surface and a thermal and electrically conductive back surface. The system provides superior electrical and thermal transfer characteristics. A heat sink having at least one flat surface is positioned to make thermal contact with the back surface of the image sensor. A multilayer circuit board having layers of conductive material separated by layers of insulating material and having an opening therethrough sufficient in size to accept the heat sink provides the system support. A metal plating extends from one surface of the board through the opening in the board to the opposite surface of the board with selected ones of the layers of conductive material making electrical contact with the metal plating. The heat sink is mounted in the multilayer circuit board opening in thermal and electrical contact with the metal plating. A layer of thermal and electrically conductive grease is layered between the at least one surface of the heat sink and the conductive back surface of the linear sensor array.
Abstract:
Image scanner apparatus includes a drum having an aperture rotatable about an axis. A mechanism clamps a border of an exposed photographic film to the drum, with the film image aligned with the aperture substantially in a surface of revolution of the drum. A source of diffuse light, disposed between the rotational axis of the drum and its surface of revolution, projects a line of diffuse illumination through the aperture directly onto the film image. Lens apparatus, interposed between the surface of revolution of the drum and a linear image sensor, focuses a line of diffuse light, modulated in accordance with the film image, onto the sensor.
Abstract:
An input scanner is disclosed which is adapted to scan an image on an original, such as a radiographic film, and to form a digital representation of the image. The scanner comprises a transparent platen for supporting the film, a light source under the platen, and a plurality of linear arrays of photosensitive elements located above the platen for receiving light transmitted through the film. In order to improve the signal-to-noise ratio and the dynamic range of the scanner, the signals from adjacent photosensitive elements in the arrays are processed by a combination of analog and digital summing. Different levels of spatial resolution can be selected electronically without changing the physical disposition of the scanner elements.
Abstract:
Pixels of a digital image are produced by an area image sensor which includes a sparse array of elements. Each element is multiply exposed by different pixels of a light image. The light image is scanned in such a pattern between element exposures so that each digital image pixel has a nearest-neighbor digital image pixel that was produced by a different sensor element. By means of this arrangement, a high quality image can be produced from the digital image even if a sensor becomes defective (drops out).