摘要:
A method and system to reduce the resistance of refractory metal layers by controlling the presence of fluorine contained therein. The present invention is based upon the discovery that when employing ALD techniques to form refractory metal layers on a substrate, the carrier gas employed impacts the presence of fluorine in the resulting layer. As a result, the method features chemisorbing, onto the substrate, alternating monolayers of a first compound and a second compound, with the second compound having fluorine atoms associated therewith, with each of the first and second compounds being introduced into the processing chamber along with a carrier gas to control a quantity of the fluorine atoms associated with the monolayer of the second compound.
摘要:
Method and apparatus for reducing contamination of a substrate in a substrate processing system. The apparatus has a substrate support, a gas directing shield circumscribing the substrate support and a shadow ring disposed vertically above the substrate support and gas directing shield for retaining the substrate. The gas directing shield and substrate support define an annular channel that is provided with an edge purge gas. The edge purge gas imparts a force at the edge of a substrate resting on the substrate support the lifts it off the substrate supports and against the shadow ring. The shadow ring further has a plurality of conduits extending from its upper surface to its sidewall to provide a path for the edge purge gas to vent and to impede the flow of process gases under the backside and around the edge of the substrate. The method includes the steps of providing a substrate upon the substrate support, applying a first flow of gas to a first set of ports to lift the substrate off of the substrate support, centering the substrate upon the substrate support and applying a second flow of gas to a second set of ports to establish and maintain thermal control of the substrate.
摘要:
The present invention provides a method and apparatus for improving thermal management of gas being delivered to a chemical vapor deposition chamber. Thermal management is accomplished using a heat transfer fluid in thermal communication with the deposition gas passageways delivering the gases to the chamber for deposition. The gas injection manifold includes gas passageways and coolant liquid passageways, wherein the gas passageways extend through a constant voltage gradient gas feedthrough and the coolant liquid passageways extend through a gas input manifold coupled to the inlet end of the constant voltage gradient gas feedthrough. This arrangement provides for increase coolant liquid flow and allows maintenance or disassembly of the constant voltage gradient gas feedthrough without breaking the seal on the coolant liquid system.