Abstract:
According to an illustrative embodiment, a system for treating a wound at a tissue site of a patient comprising a reduced-pressure source to supply reduced pressure, a drape adhering to the tissue site to cover the wound where possible leak passages between the drape and the tissue site may occur, and a seal disposed between the drape and the tissue site, is disclosed. The seal is adapted to react with a fluid to form a sealant substantially filling the passages in response to air leaking through the passages from outside the drape when reduced pressure is applied to the wound. According to another illustrative embodiment, a method for sealing a drape to a tissue site for treating a wound at the tissue site comprising applying the drape to cover the tissue site whereby passages are formed between the drape and the tissue site, positioning a seal between the drape and the tissue site wherein the seal is adapted to react with a fluid to form a sealant for substantially filling the passages, is also disclosed.
Abstract:
Systems, devices, and methods for treating a tissue site on a patient with reduced pressure are presented. In one instance, a reduced-pressure treatment device to treat a tissue site with reduced pressure may include a pump control unit fluidly separate from a collection unit. Pump energy may be provided by the pump control unit to deflect one or more diaphragms within the collection unit to create reduced pressure. Other systems, devices, and methods are presented.
Abstract:
Disc pump systems and methods relate to a disc pump system that includes a first disc pump having a first actuator and a second disc pump having a second actuator. The systems and methods utilize sensors to measure the displacements of the actuators and a processor to determine the pressure differential across each actuator as a function of the measured displacements of the actuators. The disc pumps are fluidly coupled by a known restriction and the processor determines the flow rate of the disc pump system based on the determined pressure differentials across each actuator and the characteristics of the known restriction.
Abstract:
Systems, methods, and dressing are presented for treating a tunnel wound on a patient. In one instance, a reduced-pressure, tunnel-wound dressing includes a longitudinal core member formed from a closed-cell foam that is surrounded by a first longitudinal concentric member formed from a manifolding material. When subjected to reduced pressure, the longitudinal core member expands and the first longitudinal concentric member compresses. These actions create intimate contact between the tunnel wound and the dressing, oppose collapse of the tunnel, and when reduced pressure is removed provide clearance to remove the dressing. Other embodiments are presented.
Abstract:
A reduced pressure dressing for applying reduced pressure treatment to a tissue site includes an interface layer adapted to be positioned at the tissue site. An absorbent layer is in fluid communication with the interface layer to absorb liquid from at least one of the interface layer and the tissue site. A pump is in fluid communication with the absorbent layer to deliver a reduced pressure to the tissue site. A cover is positioned over the pump, the absorbent layer, and the interface layer to maintain the reduced pressure at the tissue site, and a liquid-air separator is positioned between the absorbent layer and the pump to inhibit liquid from entering the pump.
Abstract:
According to an illustrative embodiment, a system for treating a wound at a tissue site of a patient comprising a reduced-pressure source to supply reduced pressure, a drape adhering to the tissue site to cover the wound where possible leak passages between the drape and the tissue site may occur, and a seal disposed between the drape and the tissue site, is disclosed. The seal is adapted to react with a fluid to form a sealant substantially filling the passages in response to air leaking through the passages from outside the drape when reduced pressure is applied to the wound. According to another illustrative embodiment, a method for sealing a drape to a tissue site for treating a wound at the tissue site comprising applying the drape to cover the tissue site whereby passages are formed between the drape and the tissue site, positioning a seal between the drape and the tissue site wherein the seal is adapted to react with a fluid to form a sealant for substantially filling the passages, is also disclosed.
Abstract:
A manually-actuated, constant reduced-pressure apparatus for use with a reduced-pressure system for treating tissue at a tissue site includes a flexible, collapsible member that is operable to move between a compressed position and an extended position. The collapsible member may be disposed between a carrier member and a slider member that move between a compressed position and an extended position. The carrier member and slider member are urged away from each other by a constant-force biasing member, e.g., a constant force coil spring. As the apparatus moves from the compressed position to the extended position, a constant reduced-pressure is generated and delivered to a reduced-pressure port. Methods of manufacturing a manually-actuated, constant reduced-pressure apparatus and methods of treating a tissue site are also provided.
Abstract:
A reduced pressure treatment system includes a control unit having a control system and a reduced pressure source. The reduced pressure treatment system further includes a manifold unit in fluid communication with the reduced pressure source and a component module to augment treatment. The component module is configured to communicate with the control system of the control unit, and the component module includes a first mounting region configured to be coupled to a complimentary mounting region of the control unit. The component module further includes a second mounting region identical to the complimentary mounting region of the control unit to allow a second component module to be coupled to the first component module.
Abstract:
A disc pump system includes a pump body having a substantially cylindrical shape defining a cavity for containing a fluid, the cavity being formed by a side wall closed at both ends by substantially circular end walls, at least one of the end walls being a driven end wall. The system includes an actuator operatively associated with the driven end wall to cause an oscillatory motion of the driven end and an isolator is operatively associated with the peripheral portion of the driven end wall to reduce damping of the displacement oscillations. The isolator comprises a flexible material, which in turn includes an RFID tag.
Abstract:
Systems, devices, and methods for imaging a sinus in a patient involving a through sinus are presented. In one instance, a system includes a radiopaque wound filler for disposing into the through sinus. The system further includes a radiopaque solution for deploying into the sinus, and a radiopaque solution unit having a radiopaque solution reservoir and a positive pressure source. Other systems, devices, and methods are presented.