Abstract:
An apparatus, system and method determining a position of an instrument (100) are provided. A sheath (104) is configured to fit within an instrument channel of a medical scope. An optical fiber (112) is disposed within the sheath and a plurality of sensors (106) is integrated in optical fiber. The sensors are configured to measure deflections and bending in the optical fiber. A fixing mechanism (140) is sized to fit within the instrument channel in a first state and fixes the sheath within the instrument channel in a second state such that the fixing mechanism anchors the sheath and the optical fiber so that the deflections and bending in the optical fiber are employed with a pre-procedural volumetric image to determine a position of the instrument.
Abstract:
A volume mapping instrument (20), deployable within a partially or a completely enclosed anatomical volume, employs one or more medical tools (40) with each medical tool (40) being transitional between a deployable structural configuration to orderly position each medical tool (40) within the anatomical volume and a mapping structural configuration to anchor the medical tool (40) against the boundary of the anatomical volume. The volume mapping instrument (20) further employs an optical shape sensor (30) to generate one or more encoded optical signals indicative of a shape of the boundary of the anatomical volume in response to each medical tool (40) being transitioned from the deployable structural configuration to the mapping structural configuration within the anatomical volume. Based on the encoded optical signal(s), a volume mapping module (51) is utilized to map a portion or an entirety of the boundary of the anatomical volume.
Abstract:
A medical method and system include a medical imaging system configured to generate images of an interventional procedure. An overlay generator is configured to generate an overlay image on the images of the interventional procedure. An interventional device tracking system is configured to track a three-dimensional position, orientation and shape of the interventional device during the procedure, wherein the overlay image is dynamically updated in response to deformations caused to an organ of interest by the interventional device during the procedure.
Abstract:
A method and system for generating imaging data during a medical intervention are provided. An external optical sensor is attached on the patient's body, and includes at least one external orientation fiber core configured to measure an orientation of the external optical sensor relative to a point of reference. The external optical sensor is interrogated to generate external sensor orientation information during the medical intervention. That information is used to estimate an orientation of the external optical sensor, which is then displayed during the medical intervention.
Abstract:
A system and method for shape sensing with optical fiber include collecting (610) shape data from a shape sensing optical fiber device. The shape data are tested (620) to determine data positions that exceed an acceptable threshold based on geometrical expectations of the shape data. The shape data corresponding to the data positions that exceed an acceptable threshold are rejected (640). Acceptable shape data are rendered (650) to provide a stable shape sensing data set.
Abstract:
A fiber twist reduction system for optical shape sensing enabled instruments includes a rotatable launch fixture (12) configured to hold an optical fiber (28). An optical shape sensing enabled device (26) includes the optical fiber disposed therein. A rotation mechanism (14) is configured to rotate the fiber in response to a twist of the fiber to reduce accumulated twist along its length.
Abstract:
The present invention relates to devices, system and method for detecting gestures. The devices, systems and methods uses optically shape sensing devices for tracking and monitoring users. This allows unhindered, robust tracking of persons in different setting. The devices, systems and methods are especially useful in health care institutions.
Abstract:
A method, device, and system are provided for placing a port (12, 22, 32) for a surgical tool (20, 30) relative to real-time anatomical data. The method comprises: placing an endoscope (10) in a standard port (12); determining real-time anatomical data from an image from the endoscope; using a port localization apparatus (210) to identify an optimal location for an instrument port relative to the image from the endoscope; and creating an instrument port at the identified location.
Abstract:
The present invention relates to a sensor device for detecting dose of radiation received at the sensor device, the sensor device comprising a flexible body having a cross-section being comparatively small relative to the length of the device, a cladding at the flexible body, the cladding converting incoming radiation into visible light, and an optical shape sensing device disposed within the flexible body and configured to determine a shape of the flexible instrument relative to a reference, the shape sensing device configured to collect information based on its configuration to map an intraluminal structure during a procedure. The present invention further relates to a radiation therapy system including such a sensor device and a method of operating a radiation therapy system including such a sensor device.
Abstract:
A system and method for functioning organ assessment include a sensing enabled flexible device (102) having an optical fiber configured to sense induced strain continuously over a length of the flexible device. The flexible device includes a manipulation mechanism (105) configured to permit engagement with an interior wall of an organ over the length. An interpretation module (115) is configured to receive optical signals from the optical fiber between two phases of movement of the organ while the organ is functioning and to interpret the optical signals to quantify parameters associated with the functioning of the organ.