Method for manufacturing polycrystalline silicon thin-film solar cells by means method for crystallizing large-area amorphous silicon thin film using linear electron beam

    公开(公告)号:US10069031B2

    公开(公告)日:2018-09-04

    申请号:US15592421

    申请日:2017-05-11

    Abstract: One embodiment of the present invention relates to a method of manufacturing polycrystalline silicon thin-film solar cell by a method of crystallizing a large-area amorphous silicon thin film using a linear electron beam, and the technical problem to be solved is to crystallize an amorphous silicon thin film, which is formed on a low-priced substrate, by means of an electron beam so as for same to easily be of high quality by having high crystallization yield and to be processed at a low temperature. To this end, one embodiment of the present invention provides a method of manufacturing polycrystalline silicon thin-film solar cell by means of a method for crystallizing a large-area amorphous silicon thin film using a linear electron beam, the method comprising: a substrate preparation step for preparing a substrate; a type 1+ amorphous silicon layer deposition step for forming a type 1+ amorphous silicon layer on the substrate; a type 1 amorphous silicon layer deposition step for forming a type 1 amorphous silicon layer on the type 1+ amorphous silicon layer; an absorption layer formation step for forming an absorption layer by radiating a linear electron beam to the type 1 amorphous silicon layer and thus crystallizing the type 1 amorphous layer and the type 1+ amorphous silicon layer; a type 2 amorphous silicon layer deposition step for forming a type 2 amorphous silicon layer on the absorption layer; and an emitter layer formation step for forming an emitter layer by radiating a linear electron beam to the type 2 amorphous silicon layer and thus crystallizing the type 2 amorphous silicon layer, wherein the linear electron beam is radiated from above type 1 and type 2 amorphous silicon layers in a linear scanning manner in which to reciprocate in a predetermined area.

    METHOD FOR MANUFACTURING POLYCRYSTALLINE SILICON THIN-FILM SOLAR CELLS BY MEANS METHOD FOR CRYSTALLIZING LARGE-AREA AMORPHOUS SILICON THIN FILM USING LINEAR ELECTRON BEAM

    公开(公告)号:US20170250303A1

    公开(公告)日:2017-08-31

    申请号:US15592421

    申请日:2017-05-11

    Abstract: One embodiment of the present invention relates to a method of manufacturing polycrystalline silicon thin-film solar cell by a method of crystallizing a large-area amorphous silicon thin film using a linear electron beam, and the technical problem to be solved is to crystallize an amorphous silicon thin film, which is formed on a low-priced substrate, by means of an electron beam so as for same to easily be of high quality by having high crystallization yield and to be processed at a low temperature. To this end, one embodiment of the present invention provides a method of manufacturing polycrystalline silicon thin-film solar cell by means of a method for crystallizing a large-area amorphous silicon thin film using a linear electron beam, the method comprising: a substrate preparation step for preparing a substrate; a type 1+ amorphous silicon layer deposition step for forming a type 1+ amorphous silicon layer on the substrate; a type 1 amorphous silicon layer deposition step for forming a type 1 amorphous silicon layer on the type 1+ amorphous silicon layer; an absorption layer formation step for forming an absorption layer by radiating a linear electron beam to the type 1 amorphous silicon layer and thus crystallizing the type 1 amorphous layer and the type 1+ amorphous silicon layer; a type 2 amorphous silicon layer deposition step for forming a type 2 amorphous silicon layer on the absorption layer; and an emitter layer formation step for forming an emitter layer by radiating a linear electron beam to the type 2 amorphous silicon layer and thus crystallizing the type 2 amorphous silicon layer, wherein the linear electron beam is radiated from above type 1 and type 2 amorphous silicon layers in a linear scanning manner in which to reciprocate in a predetermined area.

Patent Agency Ranking