Abstract:
The present disclosure includes systems and techniques relating to wireless local area network devices. Systems and techniques include accessing a data stream intended for transmission to a single wireless communication device, multiplexing the data stream onto two or more radio pathways to produce a data packet, operating the two or more radio pathways to respectively use two or more groups of orthogonal frequency division multiplexing (OFDM) subcarriers to generate two or more different portions of the data packet, the two or more groups of OFDM subcarriers being respectively assigned to two or more frequency bands, and transmitting the data packet to the single wireless communication device by concurrent transmissions of the two or more different portions via the two or more frequency bands.
Abstract:
In a method for performing successive interference cancellation (SIC) in a multiple input, multiple output (MIMO) communication channel, a plurality of received signals are processed to decode a first codeword. An equalizer is generated corresponding to a second codeword and applied to the plurality of received signals to generate an equalized signal. An interference signal is also generated using the first codeword and then subtracted from the equalized signal. The equalized signal is processed to decode the second codeword.
Abstract:
Methods and systems for decoding a data packet using soft-bit retransmission combining are provided herein. A first transmission of the data packet is received and corresponding soft information is generated. The soft information is represented by a first set of bits and a subset of those bits is stored. Subsequently, a second transmission of the data packet is received and corresponding soft information is generated. The soft information corresponding to the second transmission is represented by a second set of bits and combined with the stored subset of soft-bits corresponding to the first transmission to produce a third set of bits. At least a portion of the data packet is decoded based on the third set of bits.
Abstract:
Systems, methods, and other embodiments associated with adaptive low-complexity channel estimation are illustrated. In one embodiment an integrated circuit includes a controller configured to control a switch to select between a plurality of processing paths that each perform channel estimation using a different order of operations to process an orthogonal frequency-division multiplexed (OFDM) signal.
Abstract:
Systems and methods are provided for processing a signal using simplified channel statistics. In an example implementation, a channel profile for a multipath channel is estimated by detecting, within a given range, a number of channel taps associated with a channel impulse response, and assigning each of those channel taps a uniform amplitude value corresponding to a constant signal strength. A signal may be received through the multipath channel and filtered based on the estimated channel profile.
Abstract:
Systems and techniques for decoding are described. A described technique includes receiving coded bit streams that are differently encoded versions of an original bit stream, the coded bit streams including coded bits that are based on the original bit stream, where the coded bit streams have different encoding rates; identifying, within the coded bit streams, repeated coded bits of a coded bit of the coded bits that has been repeated N times; combining the coded bit streams to produce a combined bit stream by at least combining the repeated coded bits into a combined coded bit; determining, without multiplying by a normalization factor that is based on N, a bit metric for the combined coded bit that is a function of N; and decoding the combined bit stream by at least using the bit metric.
Abstract:
The present disclosure includes systems and techniques relating to processing received spatially diverse transmissions. In some implementations, an apparatus includes: circuitry configured to receive signals from separate communication inputs; circuitry configured to filter the signals to reduce noise, interference, or both; circuitry configured to estimate covariance of the separate communication inputs, including estimating a correlation between the separate communication inputs; and circuitry configured to apply the covariance estimation to the filtering circuitry to effect noise whitening and to force an underestimation of the correlation between the separate communication inputs as applied.
Abstract:
Systems, methods, apparatus, and techniques are provided for receiving signals over a communications channel, generating a plurality of successive estimates of instantaneous interference present in the communications channel at a respective plurality of samples based on the received signals, producing an average interference estimate of the interference channel based on the plurality of successive estimates, and producing a decoded codeword based on i) the average interference estimate and ii) the received signals.
Abstract:
Systems, methods, and other embodiments associated with processing wireless signals. According to one embodiment, a wireless receiver includes at least one antenna configured to receive a wireless signal. The wireless signal comprises pilot symbols dispersed irregularly throughout a two-dimensional grid. The pilot symbols of the wireless signal are usable by the wireless receiver to estimate the wireless channel at each point in the two-dimensional grid. The wireless receiver includes a pattern logic including hardware configured to generate additional pilot symbols in the two-dimensional grid. The additional pilot symbols generated by the pattern logic along with the pilot symbols dispersed irregularly throughout the two-dimensional grid form a regular distribution of pilot symbols in the two-dimensional grid. The wireless receiver is configured to estimate the wireless channel at each point in the two-dimensional grid based on the regular distribution of pilot symbols in the two-dimensional grid.
Abstract:
Techniques are provided for detecting a coded signal in the presence of interference. In an embodiment, a primary transmitter corresponds to a desired transmitter, and one or more secondary transmitters correspond to interfering transmitters. Received symbols, which include interference and additive noise, are filtered to recover a set of original message bits. An estimate of the set of original message bits may be determined using an ordered successive interference cancellation (SIC) decoder that uses either a SIC detector or an AWGN-based detector, depending on the signal-to-interference ratio at a primary receiver.