Abstract:
A method and apparatus of coding using multiple coding modes with multiple color spaces are provided. For the encoder side, a coding mode is selected from a coding mode group. A corresponding color domain is associated with the coding mode and the corresponding color domain is selected from a color-domain group including at least two different color domains. The current coding unit is then encoded in the corresponding color domain using the coding mode. Furthermore, the syntax of the corresponding color domain is signaled in current coding unit syntaxes. The different color domains may include RGB color domain and YCoCg color domain. According to another method, if the midpoint prediction (MPP) mode is selected, a current block is color transformed into another color domain and the MPP coding process is performed in said another color domain.
Abstract:
A data processing apparatus includes a storage element and a clock controller. The storage element has storage partitions, including a first storage partition and a second storage partition. The clock controller controls clock driving of the first storage partition and the second storage partition. When a processing circuit is configured to operate in a first condition to process a first data sample with a first bit width, the clock controller enables clock driving of both of the first storage partition and the second storage partition. When the processing circuit is configured to operate in a second condition to process a second data sample with a second bit width, the clock controller enables clock driving of the first storage partition and disables clock driving of the second storage partition.
Abstract:
An encoding method includes applying a search range constraint on a search range of a block in a current frame, and encoding the block in the current frame with pixel information in a reference frame according to inter prediction performed based on the search range of the block in the current frame, wherein a resolution of the current frame is different from a resolution of the reference frame.
Abstract:
An encoding method includes following steps: performing a wave-front parallel encoding procedure for encoding pixel data of a frame partition, wherein the frame partition comprises a plurality of block rows, each of the block rows comprises a plurality of blocks, and each of the blocks comprises a plurality of pixels; and imposing constraint on a coding mode selection of a first block of a first block row.
Abstract:
A method and apparatus for a multiple-channel image/video coding system are disclosed. A residue generation process is applied to the image/video data to generate residue data. A set of integer operations is applied to the residue data across the input channels to generate residue transformed data having multiple output channels. In one embodiment, the residue transformed data associated with a first output channel is related to the difference between a first residue data associated with a first input channel and a second residue data associated with a second input channel. In another embodiment, the residue transformed data associated with a second output channel is related to the second difference between a threshold and a third residue data associated with a third input channel, and wherein the threshold corresponds to the first truncated or rounded average of the first residue data and the second residue data.
Abstract:
An image encoding method with rate control includes at least the following steps: defining a plurality of candidate bit budgets corresponding to different pre-defined maximum encoded bit lengths for one coding unit respectively; when encoding pixel data of a plurality of pixels within a current coding unit of an access unit of a frame, determining a target bit budget selected from the candidate bit budgets and allocating the target bit budget to the current coding unit; and outputting encoded pixel data of the pixels within the current coding unit that is generated from the encoder, wherein a bit length of the encoded pixel data is smaller than or equal to the target bit budget.
Abstract:
A video encoding apparatus includes a content activity analyzer circuit and a video encoder circuit. The content activity analyzer circuit applies a content activity analysis process to consecutive frames, to generate content activity analysis results. The consecutive frames are derived from input frames of the video encoding apparatus. The content activity analysis process includes: deriving a first content activity analysis result according to a first frame and a second frame in the consecutive frames, wherein the first content activity analysis result includes a processed frame distinct from the second frame; and deriving a second content activity analysis result according to a third frame included in the consecutive frames and the processed frame. The video encoder circuit performs a video encoding process to generate a bitstream output of the video encoding apparatus, wherein information derived from the content activity analysis results is referenced by the video encoding process.
Abstract:
A video encoding apparatus includes a data buffer and a video encoding circuit. Encoding of a first frame includes: deriving reference pixels of a reference frame from reconstructed pixels of the first frame, respectively, and storing reference pixel data into the data buffer for inter prediction, wherein the reference pixel data include information of pixel values of the reference pixels. Encoding of a second frame includes performing prediction upon a coding unit in the second frame to determine a target predictor for the coding unit. The prediction performed upon the coding unit includes: determining the target predictor for the coding unit according to whether a search range on the reference frame for finding a predictor of the coding unit under an inter prediction mode includes at least one reference pixel of the reference frame that is not accessible to the video encoding circuit.
Abstract:
An entropy encoder includes an entropy encoding circuit and a size determining circuit. The entropy encoding circuit receives symbols of a pixel group, and entropy encodes data derived from the symbols of the pixel group to generate a bitstream segment which is composed of a first bitstream portion and a second bitstream portion. The first bitstream portion contains encoded magnitude data of the symbols of the pixel group, and the second bitstream portion contains encoded sign data of at least a portion of the symbols of the pixel group. The size determining circuit determines a size of a bitstream portion, wherein the bitstream portion comprises at least one of the first bitstream portion and the second bitstream portion.
Abstract:
A method and apparatus of image coding performed at an encoder or decoder using block prediction are disclosed. The block vector bit-count information associated with one or more block vectors (BVs) for the current block is determined, where the BVs are used to locate one or more block predictors for the current block. Prediction residuals corresponding to differences between the current block and the block predictors are determined. A first cost comprising the BV and residual bit-count information associated with encoding the prediction residuals using the first coding tool is determined. The second cost comprising the BV bit-count information and without the residual bit-count information is also determined. The derivation of the BV bit-count information and the prediction residuals for the current block are performed only once, and the BV bit-count information and the prediction residuals are used by the first coding tool and the second coding tool.