Abstract:
A three-dimensional stacked IC device includes a stack of at least first, second, third and fourth contact levels at an interconnect region. Each contact level has a conductive layer and an insulation layer. First, second, third and fourth electrical conductors pass through portions of the stack of contact levels. The first, second, third and fourth electrical conductors are in electrical contact with the first, second, third and fourth conductive layers, respectively. A dielectric sidewall spacer circumferentially surrounds the second, third and fourth electrical conductors so that the second, third and fourth electrical conductors only electrically contact the respective second, third and fourth conductive layers.
Abstract:
A routing pattern is provided. The routing pattern includes a first routing region, a second routing region and an interconnection region. The first routing region includes a plurality of first conductive lines extending along a first direction. The plurality of first conductive lines has a first pitch along a second direction perpendicular to the first direction. The second routing region includes a plurality of second conductive lines extending along the first direction. The plurality of second conductive lines has a second pitch along the second direction, and the second pitch is approximately equal to the first pitch. The interconnection region includes two body parts and a connecting part connecting to the body parts. The body parts are disposed separately along the first direction. A width of the connecting part along the second direction is smaller than a width of the body parts along the second direction.
Abstract:
A method of fabricating a memory device includes patterning a stacked structure to form a first staircase structure and a second staircase structure; patterning a conductive layer under the stacked structure to form a first slit trench along a first direction; forming a first dielectric layer overlaying the first staircase structure and the second staircase structure and filling into the first slit trench, wherein the first dielectric layer filled in the first slit trench forms a first slit; patterning the first dielectric layer, the stacked structure, and the conductive layer to form multiple second slit trenches, wherein the second slit trenches along a second direction perpendicular to the first direction; performing a replacement process to replace the sacrificial layers with multiple gate conductive layers; and filling a second dielectric layer in the second slit trenches to form multiple second slits.
Abstract:
A method of fabricating a memory device includes patterning a stacked structure to form a first staircase structure and a second staircase structure; patterning a conductive layer under the stacked structure to form a first slit trench along a first direction; forming a first dielectric layer overlaying the first staircase structure and the second staircase structure and filling into the first slit trench, wherein the first dielectric layer filled in the first slit trench forms a first slit; patterning the first dielectric layer, the stacked structure, and the conductive layer to form multiple second slit trenches, wherein the second slit trenches along a second direction perpendicular to the first direction; performing a replacement process to replace the sacrificial layers with multiple gate conductive layers; and filling a second dielectric layer in the second slit trenches to form multiple second slits.
Abstract:
A memory device includes a staircase structure, multiple first plugs, multiple second plugs, and multiple third plugs. The staircase structure includes multiple gate layers and multiple insulating layers alternately stacked on each other, and the staircase structure includes multiple first blocks and multiple second blocks which alternate with each other. The first plugs are disposed in the first blocks, and the first plugs in a same first block are staggered with each other. The second plugs are disposed in the first blocks. The second plugs in a same first block are staggered with each other, and the first plugs and the second plugs in a same first block are staggered with each other. The third plugs are disposed in the second blocks.
Abstract:
A semiconductor device includes a semiconductor substrate, a circuit unit and an align mark. The circuit unit is disposed on the semiconductor substrate. The align mark includes a first part and a second part respectively formed in the semiconductor substrate and adjacent to two opposite sides of the circuit unit, wherein the first part and the second part depart from each other for a predetermined distance along with a first direction.
Abstract:
An edge structure for multiple layers of devices including stacked multiple unit layers includes first and second stair structures. The first stair structure is at a first direction of the devices where device contacts are formed, including first edge portions of the unit layers at the first direction, of which the borders gradually retreat with increase of level height. The elevation angle from the border of the first edge portion of the bottom unit layer to that of the top one is a first angle. The second stair structure includes second edge portions of the unit layers at a second direction. The variation of border position of the second edge portion with increase of level height is irregular. The elevation angle from the border of the second edge portion of the bottom unit layer to that of the top one is a second angle larger than the first angle.
Abstract:
A pad structure including a plurality of material pairs and a plurality of pads is provided. The material pairs are stacked on a substrate to form a stair step structure. A stair step of the stair step structure includes one of material pairs. Each of the material pairs includes a conductive layer and a dielectric layer on the conductive layer. Each of the pads is embedded in one stair step of the stair step structure and exposed by the dielectric layer corresponding to the one stair step and another stair step above the one stair step. A thickness of one of the pads is greater than a thickness of one of the conductive layers.
Abstract:
Disclosed herein are semiconductor devices and methods for fabricating a semiconductor device. In an embodiment, a method of fabricating a semiconductor device comprises providing a substrate. The method further comprises forming, on the substrate, an array region having a first height, a peripheral region having a second height greater than the first height, and a border region, the border region separating the array region from the peripheral region. The method further comprises forming a plurality of alternating insulative and conductive layers over at least a portion of the array region and the border region. The method further comprises forming a trench through the plurality of alternating insulative and conductive layers in at least a portion of the border region, the trench having sloping sidewalls.
Abstract:
A patterning method is provided. A substrate including a material layer thereon is provided. A patterned hard mask layer, having a plurality of first holes, is formed on the material layer. Afterward, a mask layer, including a plurality of line pattern masks extending in a direction and dividing each first hole into a second hole and a third hole, is formed. The material layer is patterned using the patterned hard mask layer and the mask layer as masks to form a patterned material layer having a plurality of fourth and fifth holes. Furthermore, a semiconductor structure is provided.