摘要:
The sloped edges of patterned photoresist material are made more vertical by treating the exposed and developed photoresist pattern to an edge correction process. A layer of acid-based material is deposited on the photoresist pattern. The layer is then exposed to acid-neutralizing light to create a top-to-bottom gradient of acidity. The structure is then exposed to heat to cause the acid to diffuse into the edge of the photoresist in amounts roughly proportional to the gradient. A subsequent development process removes the acid-based layer and also reshapes the photoresist edge in proportion to the acid diffusion, leaving a more vertical edge.
摘要:
A composite sacrificial material is deposited in a void or opening in a dielectric layer on a semiconductor substrate. The composite sacrificial material includes a polymeric or oligomeric matrix with filler material mixed therein. The filler material may be particulate matter that may be used to modify one or more properties of the composite sacrificial material during semiconductor processing.
摘要:
A deliberately engineered placement and size constraint (molecular weight distribution) of photoacid generators, solubility switches, photoimageable species, and quenchers forms individual pixels within a photoresist. Upon irradiation, a self-contained reaction occurs within each of the individual pixels that were irradiated to pattern the photoresist. These pixels may take on a variety of forms including a polymer chain, a bulky cluster, a micelle, or a micelle formed of several polymer chains. Furthermore, these pixels may be designed to self-assemble onto the substrate on which the photoresist is applied.
摘要:
A semiconductor process technique to help reduce semiconductor process effects, such as undesired line edge roughness, insufficient lithographical resolution, and limited depth of focus problems associated with the removal of a photoresist layer. More particularly, embodiments of the invention use a photoacid generator (PAG) material in conjunction with a sacrificial light absorbing material (SLAM) to help reduce these and other undesired effects associated with the removal of photoresist in a semiconductor manufacturing process. Furthermore, embodiments of the invention allow a PAG to be applied in a semiconductor manufacturing process in an efficient manner, requiring fewer processing operations than typical prior art techniques.
摘要:
Several techniques are described for modulating the etch rate of a sacrificial light absorbing material (SLAM) by altering its composition so that it matches the etch rate of a surrounding dielectric. This particularly useful in a dual damascene process where the SLAM fills a via opening and is etched along with a surrounding dielectric material to form trenches overlying the via opening.
摘要:
Method and structure for minimizing the downsides associated with microelectronic device processing adjacent porous dielectric materials are disclosed. In particular, chemical protocols are disclosed wherein porous dielectric materials may besealed by attaching coupling agents to the surfaces of pores. The coupling agents may form all or part of caps on reactive groups in the dielectric surface or may crosslink to seal pores in the dielectric.
摘要:
Photoresist compositions including amino acid polymers as photoimageable species are disclosed. Methods of using the compositions in photolithography are also disclosed.
摘要:
The invention provides a layer of photosensitive material that may be directly patterned. The photosensitive material may then be decomposed to leave voids or air gaps in the layer. This may provide a low dielectric constant layer with reduced resistance capacitance delay characteristics.
摘要:
A composite sacrificial material is deposited in a void or opening in a dielectric layer on a semiconductor substrate. The composite sacrificial material includes a polymeric or oligomeric matrix with filler material mixed therein. The filler material may be particulate matter that may be used to modify one or more properties of the composite sacrificial material during semiconductor processing.
摘要:
Photoresists may be formed over a structure that has been modified so as to poison a lower layer of the photoresist. Then, when the photoresist is patterned, it is only patterned down to the poisoned layer. The poisoned layer may be removed subsequently. However, because of the use of the modification process, the critical dimensions of the photoresist may be improved in some embodiments.