Abstract:
A probe apparatus is provided and includes a probe layer formed with a through-hole, a conductor, electrically coupled to test equipment, disposed on and insulated from a through-hole sidewall, a probe disposed within the through-hole to be spaced from the conductor and thereby movable upon application of an external force thereto and a compliant layer connected to the probe and sufficiently compliant to allow the probe to at least temporarily contact the conductor upon the application of the external force thereto.
Abstract:
A method and apparatus are provided to deposit conductive bonding material into cavities in a mold. A fill head is placed in substantial contact with a mold that includes cavities. The fill head includes a sealing member that substantially encompasses an entire area to be filled with conductive bonding material. The conductive bonding material is forced out of the fill head toward the mold. The conductive bonding material is provided into at least one cavity of the cavities contemporaneous with the at least one cavity being in proximity to the fill head.
Abstract:
A method for dispensing solder bumps on a mold plate includes the steps of: relatively moving a fill head comprising an o-ring from a first location to a second location such that the o-ring decompresses as it crosses from the first location to the second location; filling at least one cavity in the mold plate with solder; and then relatively moving the fill head from the second location to a third location such that the o-ring decompresses as it crosses from the second location to the third location. The step of relatively moving the fill head from the first location to the second location includes moving from a higher elevation to a lower elevation. A mold plate to parking location interface includes: a mold plate for holding solder; a fill head with an o-ring for dispensing solder bumps on the mold plate; a parking location for locating the fill head; and a platform between the mold plate and the parking location for relatively moving the fill head from the first location to the second location such that the o-ring decompresses as it passes over the interface.
Abstract:
A method, system, and device are provided for displaying a graphical pointer at a location on a display area. The method includes displaying, with an information processing system, a display image at a display area. The pointing device captures an image corresponding to at least a portion of the display image at the display area in a field of view of the pointing device. A location within the display image corresponding to a location in the at least the portion of the display image in the field of view of the pointing device is determined. Optionally, a virtual pointer is caused to be displayed at the determined location within the display image.
Abstract:
A cooling structure for an electronic device comprises a plate including a thermally conducting material disposed over the electronic device. The cooling structure includes a first support and a second support. One of the first support and the second support provides compliance in the x-y directions, and the other support provides compliance in the z direction. In another embodiment of the present invention, the plate comprises a material having high thermal conductivity.
Abstract:
A multi-chip module (MCM) structure comprises more than one semiconductor chip lying in a horizontal plane, the MCM having individual chip contact patches on the chips and a flexible heat sink having lateral compliance and extending in a plane in the MCM and secured in a heat exchange relation to the chips through the contact patches. The MCM has a mismatch between the coefficient of thermal expansion of the heat sink and the MCM and also has chip tilt and chip height mismatches. The flexible heat sink with lateral compliance minimizes or eliminates shear stress and shear strain developed in the horizontal direction at the interface between the heat sink and the chip contact patches by allowing for horizontal expansion and contraction of the heat sink relative to the MCM without moving the individual chip contact patches in a horizontal direction.
Abstract:
According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools air utilized by the rack of information technology equipment to cool the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat generated by the rack of information technology equipment.
Abstract:
A data center cooling system may include heat transfer equipment to cool a liquid coolant without vapor compression refrigeration, and the liquid coolant is used on a liquid cooled information technology equipment rack housed in the data center. The system may also include a controller-apparatus to regulate the liquid coolant flow to the liquid cooled information technology equipment rack through a range of liquid coolant flow values based upon information technology equipment temperature thresholds.
Abstract:
Liquid-cooled electronic systems are provided which include an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket or removal of the card from the socket. A liquid-cooled cold rail is disposed at the one end of the socket, and a thermal spreader couples the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The thermally conductive extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.
Abstract:
A data center cooling system is operated in a first mode; it has an indoor portion wherein heat is absorbed from components in the data center, and an outdoor heat exchanger portion wherein outside air is used to cool a first heat transfer fluid (e.g., water) present in at least the outdoor heat exchanger portion of the cooling system during the first mode. The first heat transfer fluid is a relatively high performance heat transfer fluid (as compared to the second fluid), and has a first heat transfer fluid freezing point. A determination is made that an appropriate time has been reached to switch from the first mode to a second mode. Based on this determination, the outdoor heat exchanger portion of the data cooling system is switched to a second heat transfer fluid, which is a relatively low performance heat transfer fluid, as compared to the first heat transfer fluid. It has a second heat transfer fluid freezing point lower than the first heat transfer fluid freezing point, and the second heat transfer fluid freezing point is sufficiently low to operate without freezing when the outdoor air temperature drops below a first predetermined relationship with the first heat transfer fluid freezing point.