Abstract:
A wind turbine power plant comprises a plurality of wind turbines, each having a rated output and under the control of a power plant controller. The power plant also has a rated output which may be over-rated in response to one or more electricity pricing data, power plant age and operator demand. This may comprise a schedule of output set point changes which effect seasonal or intraday changes in electricity prices or which reflect aging of the power plant. It may also reflect the price of electricity on spot or futures markets. Once the over-rating of the power plant has been set, the output may be increased by over-rating individual turbines or operating turbines at rated power if the sum of the rated outputs of the turbines exceeds or is equal to the new power plant output set point.
Abstract:
Collection enhanced materials, flue gas additives, and methods of making the enhanced materials and flue gas additives are provided. In one embodiment, a down stream addition system configured to control material passing through a metering device from a vessel to a gaseous exhaust path extending between a unit and an exhaust flue of the unit is provided. In alternative embodiments, methods are provided for introducing at least one of a flue gas additive and a collection enhanced material to a gaseous exhaust stream exiting a unit; exposing and removing at least a portion of at least one a of flue gas additive and a collection enhanced material from a gaseous exhaust stream exiting a unit prior to entering an exhaust flue; and recycling at least a portion of material removed a from a gaseous exhaust stream exiting a unit back to the gaseous exhaust stream without passing through the unit.
Abstract:
Material withdrawal apparatus, methods, and systems of regulating material inventory in one or more units are provided. A material withdrawal apparatus includes a heat exchanger and transport medium junction configured to provide transport medium to transport the withdrawn material from the unit to the heat exchanger. Another material withdrawal apparatus includes a heat exchanger and shock coolant junction configured to provide shock coolant to the material withdrawn from the unit. Another material withdrawal apparatus includes a heat exchanger, shock coolant junction, and transport medium junction. Another embodiment of a material withdrawal apparatus includes a vessel and shock coolant junction. Another material withdrawal apparatus includes a vessel and transport medium junction. The vessel includes a wall, liner with heat insulating refractory material, fill port, and a discharge port. Other embodiments provide methods of withdrawing or regulating material in a unit and systems coupled to a material withdrawal apparatus.
Abstract:
A method for monitoring a FCC catalyst injection system is provided. In one embodiment of the invention, the method includes automatically updating a catalyst available inventory information in a digital memory device in response to a catalyst usage event. A sufficiency of the updated catalyst available inventory is automatically determined. A re-supply action is then taken in response to a determination of insufficient catalyst available inventory. The method is repeated for each catalyst usage event.
Abstract:
An addition apparatus, a fluid catalytic cracking (FCC) system having an addition apparatus, and a method for adding material to an FCC unit are provided. In one embodiment, an addition system for an FCC unit includes a container, a first eductor and a sensor. The eductor is coupled to an outlet of the container. The sensor is configured to detect a metric of material dispensed from the container through the eductor. A valve is provided for controlling the flow through the eductor. A controller provides a control signal for regulating an operational state of the valve. In another embodiment, an FCC system having an addition system is provided. In yet another embodiment, a method for adding material to an FCC unit is provided.
Abstract:
A catalyst withdrawal method for regulating catalyst inventory in a fluid catalytic cracking catalyst (FCC) unit is provided. In one embodiment, a catalyst withdrawal apparatus for removing catalyst from a FCC unit includes a pressure vessel having a metering device coupled to a fill port. A heat dissipater is located adjacent the metering device and is adapted to cool catalyst entering the pressure vessel. A sensor is coupled to the pressure vessel arranged to provide a metric indicative of catalyst entering the pressure vessel through the metering device. In another embodiment, a method for regulating catalyst inventory in a FCC unit includes the steps of determining a change of catalyst present in a FCC unit, withdrawing catalyst from the FCC unit into an isolatable storage vessel coupled to the FCC unit, measuring the amount of catalyst disposed in the storage vessel, and removing the measured catalyst from the storage vessel.
Abstract:
A method and apparatus for metering catalyst to a fluid catalytic cracking catalyst unit are provided. In one embodiment, an apparatus for metering catalyst to a fluid catalytic cracking catalyst unit includes a low pressure storage vessel coupled to a pressure vessel by a metering device. A controller is provided to control catalyst transfers between the storage and pressure vessels. The control is configured to facilitate event and catalyst inventory information with local and remote devices.
Abstract:
The invention is a multi-catalyst injection system. In one embodiment, the system comprises a plurality of catalyst storage regions associated with a vessel and a metering device associated with the vessel. The metering device is configured to provide a metric indicative of an amount of catalyst dispensed from a selected one of the catalyst storage regions.
Abstract:
A system and method for injecting catalyst into a fluid catalyst cracking (FCC) unit is provided. In one embodiment, a system for injecting catalyst into a FCC unit includes a catalyst injection apparatus coupled to a controller. The controller is housed in an enclosure suitable for hazardous service and has a communication port for communicating information derived information regarding activity of the catalyst injection apparatus to a device remote from the enclosure while the enclosure is sealed. In another embodiment, a method for injecting catalyst into a FCC unit includes the steps of dispensing catalyst from an injection system into a FCC unit, storing a record of system activity in a memory device disposed in an enclosure suitable of hazardous duty, and accessing the stored record without exposing an interior of the enclosure to an environment surrounding the enclosure.
Abstract:
A method, system, apparatus, and computer program product is presented by which mobile communications services are managed, based upon the location of the mobile communications device within absolute three dimensional area or locale, as determined by the legal managers or owners of that locale. The locale may be subdivided into sub-areas or zones, which may be overlapping. The management services include: management of mobile devices such that specific features of the device may be enabled, disabled or otherwise actively manged while within the zone as well as the provision of alternative network services while the device is within the zone; transaction services provided to the user of the device due to its presence within the zone; information services provided to the user of the device due to its presence within the zone.