摘要:
An electronic device includes a printed layer. In one embodiment, a process for forming the electronic device includes placing a workpiece over a chuck within a printing apparatus. A temperature difference is established between the workpiece and a liquid composition. The process further includes continuously printing the liquid composition over the workpiece. A viscosity of the liquid composition is allowed to increase at a rate significantly higher than an ambient viscosity increase rate. In another embodiment, the workpiece is allowed to cool to a temperature significantly below an ambient temperature before printing occurs. In still another embodiment, a printing apparatus is used for continuously printing the liquid composition over the workpiece. The printing apparatus includes the chuck, a printing head, a container, a feed line, and a first temperature-adjusting element thermally coupled to the chuck, the printing head, the container the feed line, or a combination thereof.
摘要:
The invention provides methods for the production of full-color, subpixellated organic electroluminescent (EL) devices. Substrates used in the methods of the invention for production of EL devices comprise wells wherein the walls of the wells do not require surface treatment prior to deposition of electroluminescent material. Also provided are EL devices produced by the methods described herein.
摘要:
A method of fabricating a field emission device cathode using electrophoretic deposition of carbon nanotubes in which a separate step of depositing a binder material onto a substrate, is performed prior to carbon nanotube particle deposition. First, a binder layer is deposited on a substrate from a solution containing a binder material. The substrate having the binder material deposited thereon is then transferred into a carbon nanotube suspension bath allowing for coating of the carbon nanotube particles onto the substrate. Thermal processing of the coating transforms the binder layer properties which provides for the adhesion of the carbon nanotube particles to the binder material.
摘要:
A field emission device and method of forming a field emission device are provided in accordance with the present invention. The field emission device is comprised of a substrate (12) having a deformation temperature that is less than about six hundred and fifty degrees Celsius and a nano-supported catalyst (22) formed on the substrate (12) that has active catalytic particles that are less than about five hundred nanometers. The field emission device is also comprised of a nanotube (24) that is catalytically formed in situ on the nano-supported catalyst (22), which has a diameter that is less than about twenty nanometers.
摘要:
A field emission device and method of forming a field emission device are provided in accordance with the present invention. The field emission device is comprised of a substrate (12) having a deformation temperature that is less than about six hundred and fifty degrees Celsius and a nano-supported catalyst (22) formed on the substrate (12) that has active catalytic particles that are less than about five hundred nanometers. The field emission device is also comprised of a nanotube (24) that is catalytically formed in situ on the nano-supported catalyst (22), which has a diameter that is less than about twenty nanometers.
摘要:
There is provided a backplane for an organic electronic device. The backplane has a TFT substrate having a multiplicity of electrode structures thereon. There are spaces around the electrode structures and a layer of organic filler in the spaces. The thickness of the layer of organic filler is the same as the thickness of the electrode structures.
摘要:
There is provided a backplane for an organic electronic device. The backplane has a TFT substrate; a multiplicity of electrode structures; and a bank structure defining a multiplicity of pixel openings on the electrode structures. The bank structure has a height adjacent to the pixel opening, hA, and a height removed from the pixel opening, hR, and hA is significantly less than hR.
摘要:
There is provided herein a process for forming an encapsulated electronic device. The device has active areas and sealing areas on a substrate. The process includes providing the substrate; forming a discontinuous pattern of a material having a first surface energy on at least a portion of the sealing areas; forming multiple active layers, where at least one active layer is formed by liquid deposition from a liquid medium having a surface energy greater than the first surface energy; providing an encapsulation assembly; and bonding the encapsulation assembly to the substrate in the sealing areas. Also provided are devices formed by the disclosed processes.
摘要:
There is provided a process for forming an organic electronic device. The process includes the steps of providing a TFT substrate;forming a thick organic planarization layer over the substrate; forming on the planarization layer a multiplicity of thin first electrode structures having a first thickness, where the electrode structures have tapered edges with a taper angle of no greater than 75°; forming a buffer layer by liquid deposition of a composition including a buffer material in a first liquid medium, the buffer layer having a second thickness, wherein the second thickness is at least 20% greater than the first thickness; forming over the buffer layer a chemical containment pattern defining pixel openings; depositing into at least a portion of the pixel openings a composition including a first active material in a second liquid medium; and forming a second electrode.
摘要:
An electronic device made by a process that includes forming a first layer over a substrate and placing a first liquid composition over a first portion of the first layer. The first liquid composition includes at least a first guest material and a first liquid medium. The first liquid composition comes in contact with the first layer and a substantial amount of the first guest material intermixes with the first layer. An electronic device includes a substrate and a continuous first layer overlying the substrate. The continuous layer includes a first portion in which an electronic component lies and a second portion where no electronic component lies. The first portion is at least 30 nm thick and includes a first guest material, and the second portion is no more than 40 nm thick.