Abstract:
An implantable medical device that includes a first elongated lead body having an outer surface and an opening along the outer surface, a sensor positioned along the lead body and configured to receive acoustic signals through the opening of the first lead body and generate an electrical signal representative of sounds produced at a targeted location along a patient's cardiovascular system. A therapy delivery module is capable of delivering a cardiac therapy via predetermined electrodes of a plurality of electrodes, and a processor is configured to detect a cardiac event in response to the sensed cardiac electrical signals, determine a plurality of time intervals between the electrical signals and acoustic signals, determine a correlation between the electrical signals and the acoustic signals, and control the therapy delivery module to deliver therapy in response to the determined correlation.
Abstract:
A medical device system and method that includes sensing a heart sound signal from a first external sensor, determining whether a pulmonary hypertension signature is detected in response to the sensed heart sound signal, sensing a lung sound signal from a second external sensor, determining whether a heart failure signature is detected in response to the sensed lung sound signal, and determining therapy parameters in response to determining whether a pulmonary hypertension signature is detected and determining whether a heart failure signature is detected.
Abstract:
An implantable medical device for optically sensing action potential signals in excitable body tissue. The device includes an elongated tubular lead body carrying an optical fiber extending from a proximal lead end to a distal lead end to position the optical fiber at a target site. The lead body additionally carries a conduit for dispensing a voltage-sensitive fluorescent dye into tissue surrounding the target site. The optical fiber transmits excitation light to the fluorescent dye to cause the dye to fluoresce with varying intensity as the transmembrane potentials of local tissue cells vary due to passing depolarization wavefronts. The optical fiber transmits the fluorescence signal to the device to generate an action potential signal or fiducial points of an action potential signal for use in accurately measuring and characterizing electrical activity of excitable tissue.
Abstract:
The present disclosure relates generally to pacing of cardiac tissue, and more particularly to adjusting delivery of His bundle or bundle branch pacing in a cardiac pacing system to achieve synchronized ventricular activation. A left bundle branch (LBB) cathode electrode may be implanted a left side of the septum of the patient's heart proximate to the LBB, and a right bundle branch (RBB) cathode electrode may be implanted on a right side of the septum of the patient's heart proximate to the RBB. One or both cathode electrodes may be used to deliver synchronized left and right bundle-branch pacing based on one or both of an atrial event and a ventricular event. A device for bundle branch pacing may be implanted based on determining whether an LBB block pattern or an RBB block pattern is present in monitored electrical activity.
Abstract:
An implantable medical device system is configured to generate signals representing activity of a heart of a patient; determine, based on the signals, an intrinsic delay of the heart of the patient; determine whether the intrinsic delay is indicative of a first-degree heart block being present in the heart of the patient; determine a patient-specific timing regime for conduction system pacing based on whether the intrinsic delay is indicative of the first-degree heart block being present in the heart of the patient; and administer cardiac pacing to a native conduction system of the heart of the patient based on the timing regime.
Abstract:
In some examples, processing circuitry of a medical device system determines, for each of a plurality of patient parameters, a difference metric for a current period based on a value of a patient parameter determined for the current period and a value of the patient parameter determined for an immediately preceding period, and determines a score for the current period based on a sum of the difference metrics for at least some of the plurality of patient parameters. The processing circuitry determines a threshold for the current period based on scores determined for N periods that precede the current period, compares the score for the current period to the threshold, and determines whether to generate an alert indicating that an acute cardiac event of the patient, e.g., ventricular tachyarrhythmia, is predicted, and/or deliver a therapy configured to prevent the acute cardiac event, based on the comparison.
Abstract:
The present disclosure relates generally to pacing of cardiac tissue, and more particularly to adjusting delivery of His bundle or bundle branch pacing in a cardiac pacing system to achieve synchronized ventricular activation. A leadless pacing device (LPD) may include a plurality of electrodes comprising a bundle pacing electrode leadlessly connected to the housing, which may be implanted proximate to or in the His bundle or bundle branch of the patient's heart. An electrical pulse generator may generate and deliver electrical His-bundle or bundle-branch stimulation pulses using the bundle pacing electrode based on sensing one or both of an atrial event and a ventricular event. The LPD may receive communication from another implantable device, such as a subcutaneously implanted device, and deliver His-bundle or bundle-branch pacing in response to the communication.
Abstract:
An adapter configured to electrically connect a test device to an implantable medical lead comprises a rotational electrical coupling. The rotational electrical coupling is configured to electrically connect a lead electrical connector to an adapter electrical connector. The rotational electrical coupling comprises a first conductive component configured to be electrically connected to the lead electrical connector and rotatable with a proximal portion of the implantable medical lead, and a second conductive component electrically connected to the first conductive component and the adapter electrical connector. The second conductive component may be rotationally fixed. The first and second conductive components may comprise graphite or another soft metal.
Abstract:
The present disclosure relates generally to pacing of cardiac tissue, and more particularly to adjusting delivery of His bundle or bundle branch pacing in a cardiac pacing system to achieve synchronized ventricular activation. Bundle pacing may be delivered in response to determining whether the QRS parameter or activation interval is greater than a threshold. A set of AV delays may be generated, and an optimal AV delay may be selected from the stored set of AV delays. His-bundle or bundle-branch pacing may be selectively delivered based on RV or LV activation time. Pacing may also be adjusted based on dyssynchrony detected or the type of bundle branch block pattern detected.
Abstract:
An implantable medical device that includes a first elongated lead body having an outer surface and an opening along the outer surface, a sensor positioned along the lead body and configured to receive acoustic signals through the opening of the first lead body and generate an electrical signal representative of sounds produced at a targeted location along a patient's cardiovascular system. A therapy delivery module is capable of delivering a cardiac therapy via predetermined electrodes of a plurality of electrodes, and a processor is configured to detect a cardiac event in response to the sensed cardiac electrical signals, determine a plurality of time intervals between the electrical signals and acoustic signals, determine a correlation between the electrical signals and the acoustic signals, and control the therapy delivery module to deliver therapy in response to the determined correlation.