Abstract:
A device and method for obliterating or occluding a body cavity or passageway, in particular, the left atrial appendage of a patient's heart. The procedure can be carried out intraoperatively, but is preferably carried out percutaneously by use of a delivery catheter to position an occluding device adjacent a patient's left atrial appendage. The occluding device may prevent the passage of embolic or other material to or from the left atrial appendage by volumetrically filling the appendage, closing the opening of the appendage with an occluding member, or pulling the tissue around the opening of the appendage together and fixing it in a closed state.
Abstract:
The implant includes an outer layer of ePTFE which exhibits extensibility normally not associated with ePTFE. The ePTFE is reduced in length by deforming the fibrils between the nodes while maintaining the nodes in a substantially flat configuration. Various implant configurations that can include the outer layer described are also disclosed.
Abstract:
Disclosed are implantable tissue augmentation devices, methods, and associated tools. The devices include an inflatable body, having a self-sealing membrane operably attached to a wall of the implant. The self-sealing membrane provides access for filling the device, and includes a first layer comprising a fabric. The fabric has a first plurality of yarn strands positioned in a first direction, and a second plurality of yarn strands positioned in a second direction. The first and second plurality of yarn strands intersect to form a matrix pattern with cells defined by free spaces between yarn strands. The membrane also includes a first elastomeric material configured to fill the cells as well as form a coating over the first and second plurality of yarn strand, and a second layer comprising a second elastomeric material. The second elastomeric material has a lower durometer than the first elastomeric material. Kits and systems are also disclosed.
Abstract:
This is a method and an apparatus for the treatment or introduction of contrast fluids into tissue, particularly cardiac tissue. The apparatus includes a catheter having an elongated flexible body and a tissue infusion apparatus including a hollow infusion needle configured to secure the needle into the tissue when the needle is at least partially inserted into the tissue to help prevent inadvertent removal of the needle from the tissue. This permits the selected treatment or contrast fluid to be confined to a specific site. The catheter may also include a visualization assembly including a transducer at the distal end of the body.
Abstract:
The present invention relates to a system adapted to position a medical device, such as an ablation catheter, at a location where a pulmonary vein extends from an atrium. The system optimally includes a deflectable catheter and a sheath. An ablation member is disclosed for use with the positioning system, wherein the deflectable catheter and the sheath cooperate so as to facilitate positioning of the ablation member at the location.
Abstract:
A medical device and methods for filling tissue are disclosed. The device has a first configuration for delivery into tissue to be filled and a second configuration in which the device either expands, or is forced to expand within the tissue to be filled. The exterior profile of the expanded device may be customized along its length, to achieve a desired result. The device is adapted to be placed in the skin, and may be used to reduce facial wrinkles or augment facial features such as the lips.
Abstract:
This invention is related to a tissue ablation system and method that treats atrial arrhythmia by ablating a circumferential region of tissue at a location where a pulmonary vein extends from an atrium. The system includes a circumferential ablation member with an ablation element and also includes a delivery assembly for delivering the ablation member to the location. The circumferential ablation member is generally adjustable between different configurations to allow both the delivery through a delivery sheath into the atrium and the ablative coupling between the ablation element and the circumferential region of tissue.
Abstract:
A deflectable tip catheter that is used in combination with a guidewire for delivery of an ablation element to target areas of a patient's vasculature. The deflectable tip catheter has a handle portion, an elongated shaft and a deflectable tip portion. A guidewire lumen extends through the elongated shaft and deflectable tip portion. A guidewire passes through the guidewire lumen and exits from a port in the distal end of the deflectable tip portion. The deflectable tip of the catheter is deflected by manipulation of the handle portion to direct the advancement of the guidewire as the guidewire is advanced out of the distal port. By using the deflectable tip portion to direct the advancement of the guidewire, the physician's ability to navigate sharp angles is greatly improved. The deflectable tip catheter is particularly suitable for delivering an ablation element to a pulmonary vein or pulmonary vein branch for performing circumferential ultrasound vein ablation to treat atrial fibrillation.
Abstract:
This invention is a method for treating a patient diagnosed with atrial arrhythmia by forming a circumferential conduction block along a circumferential path of tissue in a pulmonary vein wall that circumscribes the pulmonary vein lumen and transects the electrical conductivity of the pulmonary vein such that conduction is blocked along the longitudinal axis of the vein wall and into the left atrial wall. The method is performed to treat a patient with a focal arrythmogenic origin along the pulmonary vein wall by either ablating the focal origin or by isolating the focal origin from the atrial wall with the circumferential conduction block. The circumferential conduction block is also formed in a pulmonary vein in order to bridge the adjacent ends of two linear lesions, wherein each linear lesion is formed to extend between the pulmonary vein and another adjacent pulmonary vein in a less-invasive “maze”-type procedure. A circumferential ablation element in a circumferential ablation device assembly is used in a percutaneous translumenal catheter technique in order to form the circumferential conduction block in the pulmonary vein wall.
Abstract:
This invention is related to a tissue ablation system and method that treats atrial arrhythmia by ablating a circumferential region of tissue at a location where a pulmonary vein extends from an atrium. The system includes a circumferential ablation member with an ablation element and also includes a delivery assembly for delivering the ablation member to the location. The circumferential ablation member is generally adjustable between different configurations to allow both the delivery through a delivery sheath into the atrium and the ablative coupling between the ablation element and the circumferential region of tissue.